THIRD EDITION

An Introduction to the
Theory of Computer Science

languages

and

Machines

Thomas A. Sudkamp

WRIGHT STATE UNIVERSITY

PEARSON

Addison
Wesley

Boston San Francisco New York
London Toronto Sydney Tokvo Singapore Madnd
Mexico City Munich Paris Cape Town Hong Kong Montreal

Acquisitions Editor Matt Goldstein
Project Editor Katherine Harutunian
Production Supervisor Marilyn Lloyd
Marketing Manager Michelle Brown
Marketing Coordinator Jake Zavracky
Project Management Windfall Software
Composition Windfall Software
Copyeditor Yonie Overton

Technical Illustration Horizon Design
Proofreader Jennifer McClain

Indexer Thomas Sudkamp

Cover Design Manager Joyce Cosentino Wells
Cover Designer Alison R. Paddock

Cover Image © 2005 Nova Development
Prepress and Manufacturing Caroline Fell
Printer Hamilton Printing

Access the latest information about Addison-Wesley titles from our World Wide Web site:
http://www.aw-bc.com/computing

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional value.
They have been tested with care, but are not guaranteed for any particular purpose. The publisher
does not offer any warranties or representations, nor does it accept any liabilities with respect to the
programs or applications.

Library of Congress Cataloging-in-Publication Data

Sudkamp, Thomas A.
Languages and machines : an introduction to the theory of computer science / Thomas A.
Sudkamp.—3rd ed.
. cm.
Includes bibliographical references and index.
ISBN 0-321-32221-5 (alk. paper).
1. Formal languages. 2. Machine theory. 3. Computational complexity. I. Title.

QA267.3.583 2005
511.3—dc22 2004030342

Copyright © 2006 by Pearson Education, Inc.

For information on obtaining permission for use of material in this work, please submit a written
request to Pearson Education, Inc., Rights and Contract Department, 75 Arlington Street, Suite 300,
Boston, MA 02116 or fax your request to (617) 848-7047.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
any other media embodiments now known or hereafter to become known, without the prior written
permission of the publisher. Printed in the United States of America.

ISBN 0-321-32221-5
123456789 1-HAM-08 07 06 05

(dedication) — (parents)
(parents) — (first name) (last name)
(first name) — Donald | Mary

(last name) — Sudkamp

Preface

Introduction

- Foundations

Chapter 1
Mathematical Preliminaries
1.1 SetTheory 8
1.2 Cartesian Product, Relations, and Functions
1.3 Equivalence Relations 14
14 Countable and Uncountable Sets 16
1.5 Diagonalization and Self-Reference 21
1.6 Recursive Definitions 23
1.7 Mathematical Induction 27
1.8 Directed Graphs 32
Exercises 36
Bibliographic Notes 40
Chapter 2
Languages
2.1 Strings and Languages 42
2.2 Finite Specification of Languages 45
23 Regular Sets and Expressions 49
24 Regular Expressions and Text Searching

Exercises 58
Bibliographic Notes

61

54

11

41

Vi

Contents

Grammars, Automata, and Languages

Chapter 3
Context-Free Grammars

3.1 Context-Free Grammars and Languages 68

3.2 Examples of Grammars and Languages 76

33 Regular Grammars 81

3.4 Verifying Grammars 83

3.5 Leftmost Derivations and Ambiguity 89

3.6 Context-Free Grammars and Programming Language Definition
Exercises 97
Bibliographic Notes 102

Chapter 4

Normal Forms for Context-Free Grammars

4.1 Grammar Transformations 104
4.2 Elimination of A-Rules 106
43 Elimination of Chain Rules 113
44 Useless Symbols 116
4.5 Chomsky Normal Form 121
46 The CYK Algorithm 124
4.7 Removal of Direct Left Recursion 129
4.8 Greibach Normal Form 131
Exercises 138
Bibliographic Notes 143
Chapter 5
Finite Automata
5.1 A Finite-State Machine 145
5.2 Deterministic Finite Automata 147
5.3 State Diagrams and Examples 151
54 Nondeterministic Finite Automata 159
5.5 A-Transitions 165
5.6 Removing Nondeterminism 170
5.7 DFA Minimization 178

Exercises 184
Bibliographic Notes 190

93

65

103

145

Contents Vil

Chapter 6
Properties of Regular Languages 191

6.1 Finite-State Acceptance of Regular Languages 191
6.2 Expression Graphs 193
6.3 Regular Grammars and Finite Automata 196
6.4 Closure Properties of Regular Languages 200
6.5 A Nonregular Language 203
6.6 The Pumping Lemma for Regular Languages 205
6.7 The Myhill-Nerode Theorem 211
Exercises 217
Bibliographic Notes 220

Chapter 7
Pushdown Automata and Context-Free Languages 221

7.1 Pushdown Automata 221
7.2 Variations on the PDA Theme 227
7.3 Acceptance of Context-Free Languages 232
7.4 The Pumping Lemma for Context-Free Languages 239
7.5 Closure Properties of Context-Free Languages 243
Exercises 247
Bibliographic Notes 251

Computability

Chapter 8
Turing Machines 255

8.1 The Standard Turing Machine 255
8.2 Turing Machines as Language Acceptors 259

8.3 Alternative Acceptance Criteria 262

8.4 Multitrack Machines 263

8.5 Two-Way Tape Machines 265

8.6 Multitape Machines 268

8.7 Nondeterministic Turing Machines 274

8.8 Turing Machines as Language Enumerators 282
Exercises 288
Bibliographic Notes 293

viii

Contents

Chapter 9
Turing Computable Functions

9.1 ‘Computation of Functions 295
9.2 Numeric Computation 299
9.3 Sequential Operation of Turing Machines 301
94 Composition of Functions 308
9.5 Uncomputable Functions 312
9.6 Toward a Programming Language 313
Exercises 320
Bibliographic Notes 323
Chapter 10
The Chomsky Hierarchy
10.1 Unrestricted Grammars 325
10.2 Context-Sensitive Grammars 332
103 Linear-Bounded Automata 334
104 The Chomsky Hierarchy 338
Exercises 339
Bibliographic Notes 341
Chapter 11

Decision Problems and the Church-Turing Thesis

11.1 Representation of Decision Problems 344
11.2 Decision Problems and Recursive Languages 346
11.3 Problem Reduction 348
114 The Church-Turing Thesis 352
11.5 A Universal Machine 354
Exercises 358
Bibliographic Notes 360
Chapter 12
Undecidability
12.1 The Halting Problem for Turing Machines 362
12.2 Problem Reduction and Undecidability 365
12.3 Additional Halting Problem Reductions 368
12.4 Rice’s Theorem 371
12.5 An Unsolvable Word Problem 373
12.6 The Post Correspondence Problem 377

295

325

343

361

12.7 Undecidable Problems in Context-Free Grammars 382
Exercises 386
Bibliographic Notes 388
Chapter 13
Mu-Recursive Functions
13.1 Primitive Recursive Functions 389
13.2 .Some Primitive Recursive Functions 394
13.3 Bounded Operators 398
13.4 Division Functions 404
13.5 Godel Numbering and Course-of-Values Recursion 406
13.6 Computable Partial Functions 410
13.7 Turing Computability and Mu-Recursive Functions 415
13.8 The Church-Turing Thesis Revisited 421

Exercises 424
Bibliographic Notes 430

Computational Complexity

Chapter 14
Time Complexity
14.1 Measurement of Complexity 434
142 Rates of Growth 436
143 Time Complexity of a Turing Machine = 442
144 Complexity and Turing Machine Variations 446
14.5 Linear Speedup 448
14.6 Properties of Time Complexity of Languages 451
147 Simulation of Computer Computations 458
Exercises 462
Bibliographic Notes 464
Chapter 15
P, NP, and Cook’s Theorem
15.1 Time Complexity of Nondeterministic Turing Machines
152 The Classes P and NP 468
153 Problem Representation and Complexity 469
15.4 Decision Problems and Complexity Classes 472
15.5 The Hamiltonian Circuit Problem 474

466

Contents

iX

389

433

465

X Contents

15.6
15.7
15.8
15.9

Polynomial-Time Reduction 477
P=NP? 479

The Satisfiability Problem 481
Complexity Class Relations 492
Exercises 493

Bibliographic Notes 496

Chapter 16
NP-Complete Problems

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Reduction and NP-Complete Problems 497
The 3-Satisfiability Problem 498
Reductions from 3-Satisfiability 500
Reduction and Subproblems 513
Optimization Problems 517
Approximation Algorithms 519
Approximation Schemes 523

Exercises 526

Bibliographic Notes 528

Chapter 17
Additional Complexity Classes

17.1
17.2
17.3
17.4
17.5
17.6

Derivative Complexity Classes 529

Space Complexity 532

Relations between Space and Time Complexity 535
P-Space, NP-Space, and Savitch’s Theorem 540
P-Space Completeness 544

An Intractable Problem 548

Exercises 550

Bibliographic Notes 551

Deterministic Parsing

Chapter 18
Parsing: An Introduction

18.1
18.2
18.3
18.4

The Graph of a Grammar 555

A Top-Down Parser 557

Reductions and Bottom-Up Parsing 561
A Bottom-Up Parser 563

497

529

555

18.5

Parsing and Compiling 567
Exercises 568
Bibliographic Notes 569

Chapter 19
LL(k) Grammars

19.1
19.2
19.3
194
19.5
19.6
19.7
19.8

Lookahead in Context-Free Grammars
FIRST, FOLLOW, and Lookahead Sets

Strong LL(k) Grammars 579

Construction of FIRST; Sets 580
583

Construction of FOLLOW,, Sets
A Strong LL(1) Grammar 585
A Strong LL(k) Parser 587
LL(k) Grammars 589
Exercises 591

Bibliographic Notes 593

Chapter 20
LR(k) Grammars

20.1
20.2
20.3
204
20.5

LR(0) Contexts 595

An LR(0) Parser 599

The LR(0) Machine 601
Acceptance by the LR(0) Machine
LR(1) Grammars 612
Exercises 620

Bibliographic Notes 621

Appendix |
Index of Notation

Appendix 11
The Greek Alphabet

Appendix !
The ASCII Character Set

Appendix IV
Backus-Naur Form Definition of Java

Bibliography

Subject Index

606

Contents X

571

595

623

627

629

631

641
649

Preface

The objective of the third edition of Languages and Machines: An Introduction to the
Theory of Computer Science remains the same as that of the first two editions, to provide
a mathematically sound presentation of the theory of computer science at a level suitable
for junior- and senior-level computer science majors. The impetus for the third edition was
threefold: to enhance the presentation by providing additional motivation and examples; to
expand the selection of topics, particularly in the area of computational complexity; and to
provide additional flexibility to the instructor in the design of an introductory course in the
theory of computer science.

While many applications-oriented students question the importance of studying the-
oretical foundations, it is this subject that addresses the “big picture” issues of computer
science. When today’s programming languages and computer architectures are obsolete
and solutions have been found for problems currently of interest, the questions considered
in this book will still be relevant. What types of patterns can be algorithmically detected?
How can languages be formally defined and analyzed? What are the inherent capabilities
and limitations of algorithmic computation? What problems have solutions that require so
much time or memory that they are realistically intractable? How do we compare the relative
difficulty of two problems? Each of these questions will be addressed in this text.

Organization

Since most computer science students at the undergraduate level have little or no background
in abstract mathematics, the presentation is intended not only to introduce the foundations
of computer science but also to increase the student’s mathematical sophistication. This
is accomplished by a rigorous presentation of the concepts and theorems of the subject
accompanied by a generous supply of examples. Each chapter ends with a set of exercises
that reinforces and augments the material covered in the chapter.

To make the topics accessible, no special mathematical prerequisites are assumed.
Instead, Chapter 1 introduces the mathematical tools of the theory of computing: naive set

xiii

XVi Preface

precise and unambiguous definitions of the concepts, structures, and operations. The fol-
lowing notational conventions will be used throughout the book:

Items Description Examples
Elements and strings Italic lowercase letters from the beginning a, b, abc

of the alphabet
Functions Italic lowercase letters f.8h
Sets and relations Capital letters XYZ X, T
Grammars Capital letters G,G, G,
Variables of grammars Italic capital letters A B,C,S
Abstract machines Capital letters MM, M,

The use of roman letters for sets and mathematical structures is somewhat nonstandard
but was chosen to make the components of a structure visually identifiable. For example, a
context-free grammar is a structure G = (X, V, P, S). From the fonts alone it can be seen
that G consists of three sets and a variable S.

A three-part numbering system is used throughout the book; a reference is given by
chapter, section, and item. One numbering sequence records definitions, lemmas, theorems,
corollaries, and algorithms. A second sequence is used to identify examples. Tables, figures,
and exercises are referenced simply by chapter and number.

The end of a proof is marked by W and the end of an example by 0. An index of symbols,
including descriptions and the numbers of the pages on which they are introduced, is given
in Appendix L

Supplements

Solutions to selected exercises are available only to qualified instructors. Please contact your
local Addison-Wesley sales representative or send email to aw.cse @aw.com for information
on how to access them.

Acknowledgments

First and foremost, I would like to thank my wife Janice and daughter Elizabeth, whose
kindness, patience, and consideration made the successful completion of this book possible.
I would also like to thank my colleagues and friends at the Institut de Recherche en
Informatique de Toulouse, Université Paul Sabatier, Toulouse, France. The first draft of
this revision was completed while I was visiting IRIT during the summer of 2004. A special
thanks to Didier Dubois and Henri Prade for their generosity and hospitality.

The number of people who have made contributions to this book increases with each
edition. I extend my sincere appreciation to all the students and professors who have

Preface XVii

used this book and have sent me critiques, criticisms, corrections, and suggestions for
improvement. Many of the suggestions have been incorporated into this edition. Thank
you for taking the time to send your comments and please continue to do so. My email
address is tsudkamp @ cs.wright.edu.

This book, in its various editions, has been reviewed by a number of distinguished com-
puter scientists including Professors Andrew Astromoff (San Francisco State University),
Dan Cooke (University of Texas-El Paso), Thomas Fernandez, Sandeep Gupta (Arizona
State University), Raymond Gumb (University of Massachusetts-Lowell), Thomas F. Hain
(University of South Alabama), Michael Harrison (University of California at Berkeley),
David Hemmendinger (Union College), Steve Homer (Boston University), Dan Jurca (Cal-
ifornia State University-Hayward), Klaus Kaiser (University of Houston), C. Kim (Uni-
versity of Oklahoma), D. T. Lee (Northwestern University), Karen Lemone (Worcester
Polytechnic Institute), C. L. Liu (University of Illinois at Urbana-Champaign), Richard
J. Lorentz (California State University-Northridge), Fletcher R. Norris (The University
of North Carolina at Wilmington), Jeffery Shallit (University of Waterloo), Frank Stomp
(Wayne State University), William Ward (University of South Alabama), Dan Ventura
(Brigham Young University), Charles Wallace (Michigan Technological University), Ken-
neth Williams (Western Michigan University), and Hsu-Chun Yen (Iowa State University).
Thank you all.

I would also like to gratefully acknowledge the assistance received from the people at
the Computer Science Education Division of the Addison-Wesley Publishing Company and
Windfall Software who were members of the team that successfully completed this project.

Thomas A. Sudkamp
Dayton, Ohio

Introduction

The theory of computer science began with the questions that spur most scientific endeavors:
how and what. After these had been answered, the question that motivates many economic
decisions, how much, came to the forefront. The objective of this book is to explain the
significance of these questions for the study of computer science and provide answers
whenever possible.

Formal language theory was initiated by the question, “How are languages defined?” In
an attempt to capture the structure and nuances of natural language, linguist Noam Chomsky
developed formal systems called grammars for defining and generating syntactically correct
sentences. At approximately the same time, computer scientists were grappling with the
problem of explicitly and unambiguously defining the syntax of programming languages.
These two studies converged when the syntax of the programming language ALGOL was
defined using a formalism equivalent to a context-free grammar.

The investigation of computability was motivated by two fundamental questions:
“What is an algorithm?” and “What are the capabilities and limitations of algorithmic
computation?” An answer to the first question requires a formal model of computation. It
may seem that the combination of acomputer and high-level programming language, which
clearly constitute a computational system, would provide the ideal framework for the study
of computability. Only a little consideration is needed to see difficulties with this approach.
What computer? How much memory should it have? What programming language? More-
over, the selection of a particular computer or language may have inadvertent and unwanted
consequences on the answer to the second question. A problem that may be solved on one
computer configuration may not be solvable on another.

The question of whether a problem is algorithmically solvable should be independent
of the model computation used: Either there is an algorithmic solution to a problem or there
is no such solution. Consequently, a system that is capable of performing all possible algo-
rithmic computations is needed to appropriately address the question of computability. The
characterization of general algorithmic computation has been a major area of research for
mathematicians and logicians since the 1930s. Many different systems have been proposed
as models of computation, including recursive functions, the lambda calculus of Alonzo

2 Introduction

Church, Markov systems, and the abstract machines developed by Alan Turing. All of these
systems, and many others designed for this purpose, have been shown to be capable of solv-
ing the same set of problems. One interpretation of the Church-Turing Thesis, which will
be discussed in Chapter 11, is that a problem has an algorithmic solution only if it can be
solved in any (and hence all) of these computational systems.

Because of its simplicity and the similarity of its components to those of a modern day
computer, we will use the Turing machine as our framework for the study of computation.
The Turing machine has many features in common with a computer: It processes input,
writes to memory, and produces output. Although Turing machine instructions are primitive
compared with those of a computer, it is not difficult to see that the computation of
a computer can be simulated by an appropriately defined sequence of Turing machine
instructions. The Turing machine model does, however, avoid the physical limitations of
conventional computers; there is no upper bound on the amount of memory or time that may
be used in a computation. Consequently, any problem that can be solved on a computer can
be solved with a Turing machine, but the converse of this is not guaranteed.

After accepting the Turing machine as a universal model of effective computation,
we can address the question, “What are the capabilities and limitations of algorithmic
computation?” The Church-Turing Thesis assures us that a problem is solvable only if there
is a suitably designed Turing machine that solves it. To show that a problem has no solution
reduces to demonstrating that no Turing machine can be designed to solve the problem.
Chapter 12 follows this approach to show that several important questions concerning our
ability to predict the outcome of a computation are unsolvable.

Once a problem is known to be solvable, one can begin to consider the efficiency
or optimality of a solution. The question how much initiates the study of computational
complexity. Again the Turing machine provides an unbiased platform that permits the
comparison of the resource requirements of various problems. The time complexity of
a Turing machine measures the number of instructions required by a computation. Time
complexity is used to partition the set of solvable problems into two classes: tractable and
intractable. A problem is considered tractable if it is solvable by a Turing machine in which
the number of instructions executed during a computation is bounded by a polynomial
function of length of the input. A problem that is not solvable in polynomial time is
considered intractable because of the excessive amount of computational resources required
to solve all but the simplest cases of the problem.

The Turing machine is not the only abstract machine that we will consider; rather,
it is the culmination of a series of increasingly powerful machines whose properties will
be examined. The analysis of effective computation begins with an examination of the
properties of deterministic finite automata. A deterministic finite automaton is a read-once
machine in which the instruction to be executed is determined by the state of the machine
and the input symbol being processed. Although structurally simple, deterministic finite
automata have applications in many disciplines including pattern recognition, the design of
switching circuits, and the lexical analysis of programming languages.

A more powerful family of machines, known as pushdown automata, are created by
adding an external stack memory to finite automata. The addition of the stack extends the

Introduction 3

computational capabilities of a finite automaton. As with the Turing machines, our study of
computability will characterize the computational capabilities of both of these families of
machines.

Language definition and computability, the dual themes of this book, are not two
unrelated topics that fall under the broad heading of computer science theory, but rather
they are inextricably intertwined. The computations of a machine can be used to recognize
a language; an input string is accepted by the machine if the computation initiated with the
string indicates its syntactic correctness. Thus each machine has an associated language,
the set of strings accepted by the machine. The computational capabilities of each family of
abstract machines is characterized by the languages accepted by the machines in the family.
With this in mind, we begin our investigations into the related topics of language definition
and effective computation.

Foundations

heoretical computer science includes the study of language definition, pattern recog-

nition, the capabilities and limitations of algorithmic computation, and the analysis
of the complexity of problems and their solutions. These topics are built on the founda-
tions of set theory and discrete mathematics. Chapter 1 reviews the mathematical concepts,
operations, and notation required for the study of formal language theory and the theory of
computation.

Formal language theory has its roots in linguistics, mathematical logic, and computer
science. A set-theoretic definition of language is given in Chapter 2. This definition is suffi-
ciently broad to include both natural (spoken and written) languages and formal languages,
but the generality is gained at the expense of not providing an effective method for gen-
erating the strings of a language. To overcome this shortcoming, recursive definitions and
set operations are used to give finite specifications of languages. This is followed by the
introduction of regular sets, a family of languages that arises in automata theory, formal
language theory, switching circuits, and neural networks. The section ends with an exam-
ple of the use of regular expressions—a shorthand notation for regular sets—in describing
patterns for searching text.

CHAPTER 1

Mathematical
Preliminaries

Set theory and discrete mathematics provide the mathematical foundation for formal lan-
guage theory, computability theory, and the analysis of computational complexity. We begin
our study of these topics with a review of the notation and basic operations of set theory.
Cardinality measures the size of a set and provides a precise definition of an infinite set.
One of the interesting results of the investigations into the properties of sets by German
mathematician Georg Cantor is that there are different sizes of infinite sets. While Cantor’s
work showed that there is a complete hierarchy of sizes of infinite sets, it is sufficient for
our purposes to divide infinite sets into two classes: countable and uncountable. A set is
countably infinite if it has the same number of elements as the set of natural numbers. Sets
with more elements than the natural numbers are uncountable.

In this chapter we will use a construction known as the diagonalization argument
to show that the set of functions defined on the natural numbers is uncountably infinite.
After we have agreed upon what is meant by the terms effective procedure and computable
JSunction (reaching this consensus is a major goal of Part III of this book), we will be
able to determine the size of the set of functions that can be algorithmically computed.
A comparison of the sizes of these two sets will establish the existence of functions whose
values cannot be computed by any algorithmic process.

While a set may consist of an arbitrary collection of objects, we are interested in sets
whose elements can be mechanically produced. Recursive definitions are introduced to
generate the elements of a set. The relationship between recursively generated sets and
mathematical induction is developed, and induction is shown to provide a general proof
technique for establishing properties of elements in recursively generated infinite sets.

8 Chapter1 Mathematical Preliminaries

This chapter ends with a review of directed graphs and trees, structures that will be
used throughout the book to graphically illustrate the concepts of formal language theory
and the theory of computation.

Set Theory

We assume that the reader is familiar with the notions of elementary set theory. In this
section, the concepts and notation of that theory are briefly reviewed. The symbol € signifies
membership; x € X indicates that x is a member or element of the set X. A slash through a
symbol represents not, so x ¢ X signifies that x is not a member of X. Two sets are equal if
they contain the same members. Throughout this book, sets are denoted by capital letters.
In particular, X, Y, and Z are used to represent arbitrary sets. Italics are used to denote the
elements of a set. For example, symbols and strings of the form a, b, A, B, aaaa, and abc
represent elements of sets.

Brackets { } are used to indicate a set definition. Sets with a small number of members
can be defined explicitly; that is, their members can be listed. The sets

X=({1,2,3}
Y={a,b,cd,e}

are defined in an explicit manner. Sets having a large finite or infinite number of members
must be defined implicitly. A set is defined implicitly by specifying conditions that describe
the elements of the set. The set consisting of all perfect squares is defined by

{nln= m? for some natural number m }.

The vertical bar | in an implicit definition is read “such that.” The entire definition is read
“the set of n such that n equals m squared for some natural number m.”

The previous example mentioned the set of natural numbers. This important set,
denoted N, consists of the numbers 0, 1, 2, 3, The empty set, denoted @, is the set
that has no members and can be defined explicitly by @ = { }.

A set is determined completely by its membership; the order in which the elements are
presented in the definition is immaterial. The explicit definitions

X={1,2,3, Y={2,1,3}, Z={1,3,2,2,2}

describe the same set. The definition of Z contains multiple instances of the number 2.
Repetition in the definition of a set does not affect the membership. Set equality requires
that the sets have exactly the same members, and this is the case; each of the sets X, Y, and
Z has the natural numbers 1, 2, and 3 as its members.

A set Y is a subset of X, written Y C X, if every member of Y is also a member of X.
The empty set is trivially a subset of every set. Every set X is a subset of itself. If Y is a

1.1 SetTheory 9

subset of X and Y # X, then Y is called a proper subset of X. The set of all subsets of X
is called the power set of X and is denoted P(X).

Example 1.1.1
Let X ={1, 2, 3}. The subsets of X are
9 {1} {2} {3}
{L2} {23} 3.1} {123} o
Set operations are used to construct new sets from existing ones. The union of two sets
is defined by
XUY={z|zeXorzeY}.

The or is inclusive. This means that z is a member of X U Y if it is a member of X or Y or
both. The intersection of two sets is the set of elements common to both. This is defined
by

XNY={z|zeXandzeY}.

Two sets whose intersection is empty are said to be disjoint. The union and intersection of
n sets, X;, Xy, . . ., X,,, are defined by

n
UXi=X,UX,U - UX,={x|x€X;, forsomei=12,...,n}

i=1

n
(Xi=XNX,N---NX,={x|xeX,;, foralli=12,...,n},

i:l

respectively.
Subsets Xj, Xy, . . . , X, of a set X are said to partition X if

n
i=1
i) X;NX; =0, for1<i, j<n, andi # j.

For example, the set of even natural numbers (zero is considered even) and the set of odd
natural numbers partition N.
The difference of sets X and Y, X — Y, consists of the elements of X that are not in Y:

X-Y={z|zeXandz &Y}

Let X be a subset of a universal set U. The complement of X with respect to U is the set
of elements in U but not in X. In other words, the complement of X with respect to U is
the set U — X. When the universe U is known, the complement of X with respect to U is
denoted X. The following identities, known as DeMorgan’s Laws, exhibit the relationships

10 Chapter1 Mathematical Preliminaries

between union, intersection, and complement when X and Y are subsets of a set U and
complementation is taken with respect to U:

H XUY)=XnY
i) XNY)=XUY.

Example 1.1.2

LetX=1{0,1,2,3},Y={2,3,4,5)}, and let X and Y denote the complement of X and Y
with respect to N. Then

XUY={0,1,2,3,4,5} i:{n|n>3}

XNY={2,3} Y={0, JU{n|n>5)
X-Y={0,1) XNY={n|n>5)
Y - X={4,5) XUY)={n|n>5)

The final two sets in the right-hand column exhibit the equality required by DeMorgan’s
Law. o

The definition of subset provides the method for proving that a set X is a subset of Y;
we must show that every element of X is also an element of Y. When X is finite, we can
explicitly check each element of X for membership in Y. When X contains infinitely many
elements, a different approach is needed. The strategy is to show that an arbitrary element
of XisinY.

Example 1.1.3

We will show that X = {87 — 1| n > 0} is a subset of Y = {2m + 1| m is odd}. To gain a
better understanding of the sets X and Y, it is useful to generate some of the elements of X
and Y:

X:81-1=7,8.2-1=15,8-3-1=23,8.4-1=31,...
Y: 2:14+1=3,2-34+1=7,2-54+1=11,2-7+1=13,...

To establish the inclusion, we must show that every element of X is also an element of Y.
An arbitrary element x of X has the form 81 — 1, for some n > 0. Let m =4n — 1. Thenm
is an odd natural number and

2m+1=2@n-1)+1

=8n—-2+1
=8n—1
=x.

Thus xisalsoinYand X C Y.]

1.2 Cartesian Product, Relations, and Functions 11

Set equality can be defined using set inclusion; sets X and Y are equal if X € Y and
Y € X. This simply states that every element of X is also an element of Y and vice versa.
When establishing the equality of two sets, the two inclusions are usually proved separately
and combined to yield the equality.

Example 1.1.4

We prove that the sets

X = {n | n = m? for some natural number m > 0}
Y={n’4+2n+1|n>0}

are equal. First, we show that every element of X is also an element of Y. Let x € X; then
x = m? for some natural number m > 0. Let m be that number. Then x can be written

X = (m0)2
=(mg— 1+ 1)2
=(mg— D> +2(my—D+1

Letting n = mg — 1, we see that x =n? 4+ 2n + 1 with n > 0. Consequently, x is a member
of the set Y.

We now establish the opposite inclusion. Let y = (ng)? + 2ng + 1 be an element of Y.
Factoring yields y = (ng + 1)2. Thus y is the square of a natural number greater than zero
and therefore an element of X.

Since X C Yand Y C X, we conclude that X = Y. 0

% Cartesian Product, Relations, and Functions

The Cartesian product is a set operation that builds a set consisting of ordered pairs of
elements from two existing sets. The Cartesian product of sets X and Y, denoted X x Y, is
defined by

XxY={[x,y]l|xeXandye Y}

A binary relation on X and Y is a subset of X x Y. The ordering of the natural numbers
can be used to generate a relation LT (less than) on the set N x N. This relation is the subset
of N x N defined by

LT = {[i, j1|i < j and i, j € N}.

The notation {i, j] € LT indicates that i is less than j, for example, [0, 1], [0, 2] € LT and
{1, 11¢LT.

12 Chapter 1 Mathematical Preliminaries

The Cartesian product can be generalized to construct new sets from any finite number
of sets. If x;, x;, . . ., x, are n elements, then [x}, x,, . . ., x,]is called an ordered n-tuple.
An ordered pair is simply another name for an ordered 2-tuple. Ordered 3-tuples, 4-tuples,
and 5-tuples are commonly referred to as triples, quadruples, and quintuples, respectively.
The Cartesian product of n sets Xy, X,, . . . , X, is defined by

Xy x Xy x oo x Xy ={lxy, %5, ..., x,]I x; €X;, fori=1,2,...,n}.

An n-ary relation on X, X,, . . . , X, isasubsetof X; x X5 x - -+ x X,,. 1-ary, 2-ary, and
3-ary relations are called unary, binary, and ternary, respectively.

Example 1.2.1
Let X ={1, 2,3} and Y = {a, b}. Then

a) X xY={[1,a}, [1,b], [2,a], [2, 5], [3,al, [3, b]}
b) Y x X={{a, 11, [a, 2], [a, 3], [b, 1}, [, 2], [P, 3]}
¢) YxY=({a,al {a,b], [b,a], [b, b]}

d) XxYxY={[l,a,a] [, b, a], [2,a,al, [2,b,a], (3,a,a], [3,b,a],
(1, a, b, [1, b, b, 12, a, b], [2, b, b], (3, a, b], [3, b, b]} o

Informally, a function from a set X to a set Y is a mapping of elements of X to elements
of Y in which each element of X is mapped to at most one element of Y. A function f from
X to Y is denoted f : X — Y. The element of Y assigned by the function f to an element
x € X is denoted f(x). The set X is called the domain of the function and the elements
of X are the arguments or operands of the function f. The range of f is the subset of Y
consisting of the members of Y that are assigned to elements of X. Thus the range of a
function f : X — Yistheset {y € Y|y = f(x) for some x € X}.

The relationship that assigns to each person his or her age is a function from the set of
people to the natural numbers. Note that an element in the range may be assigned to more
than one element of the domain—there are many people who have the same age. Moreover,
not all natural numbers are in the range of the function; it is unlikely that the number 1000
is assigned to anyone.

The domain of a function is a set, but this set is often the Cartesian product of two or
more sets. A function

FXixXyx---xX, =Y

is said to be an n-variable function or operation. The value of the function with variables
Xy, X3, ..., X, is denoted f(xy, x,, . .., X,). Functions with one, two, or three variables
are often referred to as unary, binary, and ternary operations. The function sq : N — N
that assigns n? to each natural number is a unary operation. When the domain of a function
consists of the Cartesian product of a set X with itself, the function is simply said to be a
binary operation on X. Addition and multiplication are examples of binary operations on N.

1.2 Cartesian Product, Relations, and Functions 13

A function f relates members of the domain to members of the range of f. A natural
definition of function is in terms of this relation. A total function f from X to Y is a binary
relation on X x Y that satisfies the following two properties:

i) For each x € X, there is a y € Y such that [x, y] € f.

ii) If [x, y;]1 € f and [x, y,] € f, then y; = y;.
Condition (i) guarantees that each element of X is assigned a member of Y, hence the term
total. The second condition ensures that this assignment is unique. The previously defined

relation LT is not a total function since it does not satisfy the second condition. A relation
on N x N representing greater than fails to satisfy either of the conditions. Why?

Example 1.2.2
Let X ={1, 2, 3} and Y = {a, b}. The eight total functions from X to Y are listed below.

x | f& x | f& x | fx) x | f&®)

1 1 a 1 a 1 b
2 2 a 2 b 2 a
3 3 b 3 3 a

x | fx) x | f x | f®) x | f(x)

1 a 1 b 1 b 1 b
b 2 a 2 b 2 b
3 b 3 b 3 a 3 b a

A partial function f from X to Y is a relation on X x Y in which y; = y, whenever
[x, yi] € f and [x, y,] € f. A partial function f is defined for an argument x if there is a
y € Y such that [x, y] € f. Otherwise, f is undefined for x. A total function is simply a
partial function defined for all elements of the domain.

Although functions have been formally defined in terms of relations, we will use the
standard notation f (x) = y to indicate that y is the value assigned to x by the function f, that
is, that [x, y] € f. The notation f(x) 1 indicates that the partial function f is undefined for
the argument x. The notation f(x) | is used to show that f (x) is defined without explicitly
giving its value.

Integer division defines a binary partial function div from N x N to N. The quotient
obtained from the division of i by j, when defined, is assigned to div(i, j). For example,
div(3, 2) =1, div(4, 2) = 2, and div(1, 2) = 0. Using the previous notation, div(i, 0) 1 and
div(i, j) { for all values of j other than zero.

A total function f : X — Y is said to be one-to-one if each element of X maps to a
distinct element in the range. Formally, f is one-to-one if x; # x, implies f(x;) # f(x;).
A function f : X — Y is said to be onto if the range of f is the entire set Y. A total function

14 Chapter1 Mathematical Preliminaries

that is both one-to-one and onto defines a correspondence between the elements of domain
and the range.

Example 1.2.3

The functions f, g, and s are defined from N to N — {0}, the set of positive natural numbers.

i) fm)=2n+1 '

.. _J1 ifn=0

i) g(n) = { n otherwise

iii) s(n)=n+1

The function f is one-to-one but not onto; the range of f consists of the odd numbers.
The mapping from N to N — {0} defined by g is clearly onto but not one-to-one since
g(0) = g(1) = 1. The function s is both one-to-one and onto, defining a correspondence
that maps each natural number to its successor. (]

Example 1.2.4

In the preceding example we noted that the function f(n) = 2n 4+ 1 is one-to-one, but not
onto the set N — {0}. It is, however, a mapping from N to the set of odd natural numbers
that is both one-to-one and onto. We will use f to demonstrate how to prove that a function
has these properties.

One-to-one: To prove that a function is one-to-one, we show that n and m must be the same
whenever f(n) = f(m). The assumption f(n) = f(m) yields,

2n+1=2m+1 or
2n =2m, and finally,
n=m.
It follows that n # m implies f(n) # f(m), and f is one-to-one.

Onto: To establish that f maps N onto the set of odd natural numbers, we must show that
every odd natural number is in the range of f. If m is an odd natural number, it can be
written m = 2n + 1 for some n € N. Then f(n) =2n + 1 =m and m is in the range of f.

]

Equivalence Relations

A binary relation over a set X has been formally defined as a subset of the Cartesian product
X x X. Informally, we use a relation to indicate whether a property holds between two
elements of a set. An ordered pair is in the relation if its elements satisfy the prescribed
condition. For example, the property is less than defines a binary relation on the set of
natural numbers. The relation defined by this property is the set LT = {[i, j1|i < j}.

1.3 Equivalence Relations 15

Infix notation is often used to express membership in many common binary relations.
In this standard usage, i < j indicates that i is less than j and consequently the pair {i, j]
is in the relation LT defined above.

We now consider a type of relation, known as an equivalence relation, that can be used
to partition the underlying set. Equivalence relations are generally denoted using the infix
notation a = b to indicate that a is equivalent to b.

Definition 1.3.1

A binary relation = over a set X is an equivalence relation if it satisfies
i) Reflexivity: a =a, foralla € X
ii) Symmetry: a = b implies b =a, forall a, b € X

iii) Transitivity: a =b and b = c implies a = ¢, for all a, b, c € X.

Definition 1.3.2

Let = be an equivalence relation over X. The equivalence class of an element a € X defined
by the relation = is the set [a]l- = {b € X |a = b}.

Example 1.3.1

Let =p be the parity relation over N defined by n =p m if, and only if, n and m have the
same parity (even or odd). To prove that =p is an equivalence relation, we must show that
it is symmetric, reflexive, and transitive.

i) Reflexivity: For every natural number 7, n has the same parity as itself and n =p n.
ii) Symmetry:If n =p m, then n and m have the same parity and m =p n.
iii) Transitivity: If n =p m and m =p k, then n and m have the same parity and m and &
have the same parity. It follows that n and k have the same parity and n =p &.

The two equivalence classes of the parity relation =p are [0]_, = {0, 2, 4, . . .}and [1]_, =
{1,3,5,...}. u]

An equivalence class is usually written [a]_, where a is an element in the class. In the
preceding example, [0]_, was used to represent the set of even natural numbers. Lemma
1.3.3 shows that if a = b, then [a]- = [b]_. Thus the element chosen to represent the class
is irrelevant.

Lemma 1.3.3

Let = be an equivalence relation over X and let a and b be elements of X. Then either
l[al= =[b]= or [a]l-N[b]-=0.

Proof. Assume that the intersection of [a]_ and [b]= is not empty. Then there is some
element c that is in both of the equivalence classes. Using symmetry and transitivity, we
show that [p]_ C [a]=. Since c is in both [a]- and [b]-, we know a = ¢ and b = ¢. By
symmetry, ¢ = b. Using transitivity, we conclude that a = b.

16 Chapter1 Mathematical Preliminaries

Now let d be any element in [b]_. Then b = d. The combination of a = b, b =d, and
transitivity yields a = d. That is, d € [a]_. We have shown that every element in [b]_ is
also in [al., so [b]_ C [a]-. By a similar argument, we can establish that [a]_ C [b]_. The
two inclusions combine to produce the desired set equality.]

Theorem 1.3.4
Let = be an equivalence relation over X. The equivalence classes of = partition X.

Proof. By Lemma 1.3.3, we know that the equivalence classes form a disjoint family of
subsets of X. Let a be any element of X. By reflexivity, a € [a].. Thus each element of X
is in one of the equivalence classes. It follows that the union of the equivalence classes is
the entire set X. [|

Countable and Uncountable Sets

Cardinality is a measure that compares the size of sets. Intuitively, the cardinality of a set is
the number of elements in the set. This informal definition is sufficient when dealing with
finite sets; the cardinality can be obtained by counting the elements of the set. There are
obvious difficulties in extending this approach to infinite sets.

Two finite sets can be shown to have the same number of elements by constructing a
one-to-one correspondence between the elements of the sets. For example, the mapping

a—1
b—2
c—3

demonstrates that the sets {a, b, c} and {1, 2, 3} have the same size. This approach, com-
paring the size of sets using mappings, works equally well for sets with a finite or infinite
number of members.

Definition 1.4.1

i) Two sets X and Y have the same cardinality if there is a total one-to-one function from
X onto Y.

ii) The cardinality of a set X is less than or equal to the cardinality of a set Y if there is
total one-to-one function from X into Y.

Note that the two definitions differ only by the extent to which the mapping covers the set Y.
If the range of the one-to-one mapping is all of Y, then the two sets have the same cardinality.

The cardinality of a set X is denoted card(X). The relationships in (i) and (ii) are
denoted card(X) = card(Y) and card(X) < card(Y), respectively. The cardinality of X is
said to be strictly less than that of Y, written card(X) < card(Y), if card(X) < card(Y) and
card(X) # card(Y). The Schroder-Bernstein Theorem establishes the familiar relationship
between < and = for cardinality. The proof of the Schroder-Bernstein Theorem is left as
an exercise.

1.4 Countable and Uncountable Sets 17

Theorem 1.4.2 (Schrioder-Bernstein)
If card(X) < card(Y) and card(Y) < card(X), then card(X) = card(Y).

The cardinality of a finite set is denoted by the number of elements in the set. Thus
card({a, b}) = 2. A set that has the same cardinality as the set of natural numbers is said
to be countably infinite or denumerable. Intuitively, a set is denumerable if its members
can be put into an order and counted. The mapping f that establishes the correspondence
with the natural numbers provides such an ordering; the first element is f(0), the second
f (1), the third f(2), and so on. The term countable refers to sets that are either finite or
denumerable. A set that is not countable is said to be uncountable.

The set N — {0} is countably infinite; the function s(n) = n + 1 defines a one-to-one
mapping from N onto N — {0}. It may seem paradoxical that the set N — {0}, obtained
by removing an element from N, has the same number of elements of N. Clearly, there is
no one-to-one mapping of a finite set onto a proper subset of itself. It is this property that
differentiates finite and infinite sets.

Definition 1.4.3
A set is infinite if it has a proper subset of the same cardinality.

Example 1.4.1

The set of odd natural numbers is countably infinite. The function f(n) =2n + 1 from
Example 1.2.4 establishes the one-to-one correspondence between N and the odd numbers.
a

A set is countably infinite if its elements can be put in a one-to-one correspondence
with the natural numbers. A diagram of a mapping from N onto a set graphically illustrates
the countability of the set. The one-to-one correspondence between the natural numbers
and the set of all integers

L.=3 2 4]

O —e O

—

wm A W N

18 Chapter1 Mathematical Preliminaries

exhibits the countability of the set of integers. This correspondence is defined by the function

div(n,2)+1 ifnisodd
—~div(n, 2) if n is even.

f(n)={

Example 1.4.2

The points of an infinite two-dimensional grid can be used to show that N x N, the set of
ordered pairs of natural numbers, is denumerable. The grid is constructed by labeling the
axes with the natural numbers. The position defined by the ith entry on the horizontal axis
and the jth entry on the vertical axis represents the ordered pair [i, j].

4 \\[0,4] [1,4] [2,4] [3.,4]
3 :\\\[0,3]‘\ [1,3] [2,3] [3,3]
0,2] [1,2] [2,2 [3,2]

1 [0.l] ~[1,l] [2, [3,1]

\

0 0,0] [1,0 [20] [3,0]

S H

- ~.’ -

0 1 2 3

The elements of the grid can be listed sequentially by following the arrows in the diagram.
This creates the correspondence

0 1 2 3 4 5 6 7

¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢
[0,01 [0,1] [1,0] [0,2] [1,11 [2,0] [0,3] [1,2]

that demonstrates the countability of N x N. The one-to-one correspondence outlined above
maps the ordered pair [i, j] to the natural number (¢ + j)(i + j + 1)/2) +i. |

The sets of interest in language theory and computability are almost exclusively finite
or denumerable. We state, without proof, several closure properties of countable sets.

Theorem 1.4.4

i) The union of two countable sets is countable.
ii) The Cartesian product of two countable sets is countable.

1.4 Countable and Uncountable Sets 19

iii) The set of finite subsets of a countable set is countable.

iv) The set of finite-length sequences consisting of elements of a nonempty countable set
is countably infinite.

The preceding theorem indicates that the property of countability is retained under
many standard set-theoretic operations. Each of these closure results can be established by
constructing a one-to-one correspondence between the new set and a subset of the natural
numbers.

A set is uncountable if it is impossible to sequentially list its members. The following
proof technique, known as Cantor’s diagonalization argument, is used to show that there
is an uncountable number of total functions from N to N. Two total functions f :N — N
and g : N — N are equal if they have the same value for every element in the domain. That
is, f =g if f(n) = g(n) for all n € N. To show that two functions are distinct, it suffices
to find a single input value for which the functions differ.

Assume that the set of total functions from the natural numbers to the natural numbers
is denumerable. Then there is a sequence fy, f, fa, - . . that contains all the functions. The
values of the functions are exhibited in the two-dimensional grid with the input values on
the horizontal axis and the functions on the vertical axis.

0 1 2 3 4

fo | fo(O) Jo(D 5o Ho3) fu)
fi | A©O) fi(h fi2) fi3 fid)
L KO LD LR LB HB
fi | O) 2 A3 (4
fo | L@ ful(D) fuD (B fu@)

Consider the function f : N — N defined by f(n) = f,(n) + L. The values of f are
obtained by adding 1 to the values on the diagonal of the grid, hence the name diagonaliza-
tion. By the definition of f, f (i) # f;(i) for every i. Consequently, f is not in the sequence
fos fis f2, - - . . This is a contradiction since the sequence was assumed to contain all the
total functions. The assumption that the number of functions is countably infinite leads to
a contradiction. It follows that the set is uncountable.

Diagonalization is a general proof technique for demonstrating that a set is not count-
able. As seen in the preceding example, establishing uncountability using diagonalization
is a proof by contradiction. The first step is to assume that the set is countable and there-
fore its members can be exhaustively listed. The contradiction is achieved by producing
a member of the set that cannot occur anywhere in the list. No conditions are put on the
listing of the elements other than that it must contain all the elements of the set. Producing
a contradiction by diagonalization shows that there is no possible exhaustive listing of the
elements and consequently that the set is uncountable. This technique is exhibited again in
the following examples.

20 Chapter1 Mathematical Preliminaries

Example 1.4.3

A function f from N to N has a fixed point if there is some natural number i such that
f (i) =i. For example, f(n) = n? has fixed points 0 and 1, while f(n) = n? + 1 has no
fixed points. We will show that the number of functions that do not have fixed points is
uncountable. The argument is similar to the proof that the number of all functions from N
to N is uncountable, except that we now have an additional condition that must be met when
constructing an element that is not in the listing.

Assume that the number of the functions without fixed points is countable. Then these
functions can be listed fy, f}, f5, To obtain a contradiction to our assumption that the
set is countable, we construct a function that has no fixed points and is not in the list. Consider
the function f (n) = f,,(n) + n + 1. The addition of n + 1in the definition of f ensures that
f(n) > n forall n. Thus f has no fixed points. By an argument similar to that given above,
f (@) # f;() for all i. Consequently, the listing fy, fi, f2, - - . is not exhaustive, and we
conclude that the number of functions without fixed points is uncountable. o

Example 1.4.4

P(N), the set of subsets of N, is uncountable. Assume that the set of subsets of N is
countable. Then they can be listed Ny, Ny, Ny, Define a subset D of N as follows: For
every natural number j,

j €Dif, and only if, j ¢ N;.

By our construction, 0 € Dif 0 € Ny, 1 € Dif 1 € Ny, and so on. The set D is clearly a set of
natural numbers. By our assumption, Ny, Ny, Ny, . . . is an exhaustive listing of the subsets
of N. Hence, D = N; for some i. Is the number i in the set D? By definition of D,

i eDif, and only if, i € N;.
But since D = N;, this becomes
i € Dif, and only if, i € D,

which is a contradiction. Thus, our assumption that P(N) is countable must be false and we
conclude that P(N) is uncountable.

To appreciate the “diagonal” technique, consider a two-dimensional grid with the
natural numbers on the horizontal axis and the vertical axis labeled by the sets Ny, Ny,
N,, The position of the grid designated by row N; and column j contains yesif j € N;.
Otherwise, the position defined by N; and column j contains no. The set D is constructed by
considering the relationship between the entries along the diagonal of the grid: the number
J and the set N;. By the way that we have defined D, the number j is an element of D if,
and only if, the entry in the position labeled by N; and j is no. a

1.5 Diagonalization and Self-Reference 21

Diagonalization and Self-Reference

In addition to its use in cardinality proofs, diagonalization provides a method for demon-
strating that certain properties or relations are inherently contradictory. These results are
used in nonexistence proofs since there can be no object that satisfies such a property. Di-
agonalization proofs of nonexistence frequently depend upon contradictions that arise from
self-reference—an object analyzing its own actions, properties, or characteristics. Russell’s
paradox, the undecidability of the Halting Problem for Turing Machines, and Godel’s proof
of the undecidability of number theory are all based on contradictions associated with self-
reference.

The diagonalization proofs in the preceding section used a table with operators listed
on the vertical axis and their arguments on the horizontal axis to illustrate the relationship
between the operators and arguments. In each example, the operators were of a different
type than their arguments. In self-reference, the same family of objects comprises the
operators and their arguments. We will use the barber’s paradox, an amusing simplification
of Russell’s paradox, to illustrate diagonalization and self-reference.

The barber’s paradox is concerned with who shaves whom in a mythical town. We are
told that every man who is able to shave himself does so and that the barber of the town
(a man himself) shaves all and only the people who cannot shave themselves. We wish to
consider the possible truth of such a statement and the existence of such a town. In this case,
the set of males in the town make up both the operators and the arguments; they are doing
the shaving and being shaved. Let M = {py, p,, ps, - .., D;, - - -} be the set of all males in
the town. A tabular representation of the shaving relationship has the form

14 | 2] pP3 cee pi

pl - - - e -

P3 - - - cee -

where the i, jth position of the table has a 1 if p; shaves p; and a 0 otherwise. Every column
will have one entry with a 1 and all the other entries will be 0; each person either shaves
himself or is shaved by the barber. The barber must be one of the people in the town, so
he is p; for some value i. What is the value of the position i, i in the table? This is classic
self-reference; we are asking what occurs when a particular object is simultaneously the
operator (the person doing the shaving) and the operand (the person being shaved).

Who shaves the barber? If the barber is able to shave himself, then he cannot do so since
he shaves only people who are unable to shave themselves. If he is unable to shave himself,

22 Chapter1 Mathematical Preliminaries

then he must shave himself since he shaves everyone who cannot shave themselves. We
have shown that the properties describing the shaving habits of the town are contradictory
so such a town cannot exist.

Russell’s paradox follows the same pattern, but its consequences were much more
significant than the nonexistence of a mythical town. One of the fundamental tenets of
set theory as proposed by Cantor in the late 1800s was that any property or condition that
can be described defines a set—the set of objects that satisfy the condition. There may be
no objects, finitely many, or infinitely many that satisfy the property, but regardless of the
number or the type of elements, the objects form a set. Russell devised an argument based
on self-reference to show that this claim cannot be true.

The relationship examined by Russell’s paradox is that of the membership of one set
in another. For each set X we ask the question, “Is a set Y an element of X?” This is not
an unreasonable question, since one set can certainly be an element of another. The table
below gives both some negative and positive examples of this question.

X Y YeX?
{a} {a} no
{{a}, b} {a} yes
{{a}, a, B}) yes
{{a, b}, {a}} {{a}} no
{{{a}, b}, b} {{a}, b} yes

It is important to note that the question is not whether Y is a subset of X, but whether it is
an element of X.
The membership relation can be depicted by the table

X, X X5 ... X

where axes are labeled by the sets. A table entry [i, j]is 1 if X; is an element of X; and 0
if X; is not an element of X;.

A question of self-reference can be obtained by identifying the operator and the operand
in the membership question. That is, we ask if a set X; is an element of itself. The diagonal
entry [i, i]in the preceding table contains the answer to the question, “Is X; an element of
X;?" Now consider the property that a set is not an element of itself. Does this property
define a set? There are clearly examples of sets that satisfy the property; the set {a} is not

1.6 Recursive Definitions 23

an element of itself. The satisfaction of the property is indicated by the complement of the
diagonal. A set X; is not an element of itself if, and only if, entry [i, i]is 0.

Assume that S = {X | X € X} is a set. Is S in S? If S is an element of itself, then it is
not in S by the definition of S. Moreover, if S is not in S, then it must be in S since it is not
an element of itself. This is an obvious contradiction. We were led to this contradiction by
our assumption that the collection of sets that satisfy the property X ¢ X form a set.

We have constructed a describable property that cannot define a set. This shows that
Cantor’s assertion about the universality of sets is demonstrably false. The ramifications of
Russell’s paradox were far-reaching. The study of set theory moved from a foundation based
on naive definitions to formal systems of axioms and inference rules and helped initiate the
formalist philosophy of mathematics. In Chapter 12 we will use self-reference to establish
a fundamental result in the theory of computer science, the undecidability of the Halting
Problem.

Recursive Definitions

¢ AR

Many, in fact most, of the sets of interest in formal language and automata theory contain
an infinite number of elements. Thus it is necessary that we develop techniques to describe,
generate, or recognize the elements that belong to an infinite set. In the preceding section we
described the set of natural numbers utilizing ellipsis dots (. . .). This seemed reasonable
since everyone reading this text is familiar with the natural numbers and knows what comes
after 0, 1, 2, 3. However, this description would be totally inadequate for an alien unfamiliar
with our base 10 arithmetic system and numeric representations. Such a being would have
no idea that the symbol 4 is the next element in the sequence or that 1492 is a natural
number.

In the development of a mathematical theory, such as the theory of languages or
automata, the theorems and proofs may utilize only the definitions of the concepts of that
theory. This requires precise definitions of both the objects of the domain and the operations.
A method of definition must be developed that enables our friend the alien, or a computer
that has no intuition, to generate and “understand” the properties of the elements of a set.

A recursive definition of a set X specifies a method for constructing the elements
of the set. The definition utilizes two components: a basis and a set of operations. The
basis consists of a finite set of elements that are explicitly designated as members of X.
The operations are used to construct new elements of the set from the previously defined
members. The recursively defined set X consists of all elements that can be generated from
the basis elements by a finite number of applications of the operations.

The key word in the process of recursively defining a set is generate. Clearly, no
process can list the complete set of natural numbers. Any particular number, however, can be
obtained by beginning with zero and constructing an initial sequence of the natural numbers.
This intuitively describes the process of recursively defining the set of natural numbers. This
1dea is formalized in the following definition.

24 Chapter1 Mathematical Preliminaries

Definition 1.6.1

A recursive definition of N, the set of natural numbers, is constructed using the successor
function s.

i) Basis: 0 € N.
ii) Recursive step: If n € N, then s(n) € N.

iii) Closure: n € N only if it can be obtained from O by a finite number of applications of
the operation s.

The basis explicitly states that O is a natural number. In (ii), a new natural number
is defined in terms of a previously defined number and the successor operation. The clo-
sure section guarantees that the set contains only those elements that can be obtained
from O using the successor operator. Definition 1.6.1 generates an infinite sequence 0,
5(0), s(s(0)), s(s(s(0))), This sequence is usually abbreviated 0, 1,2, 3, How-
ever, anything that can be done with the familiar Arabic numerals could also be done with
the more cumbersome unabbreviated representation.

The essence of a recursive procedure is to define complicated processes or structures
in terms of simpler instances of the same process or structure. In the case of the natural
numbers, “simpler” often means smaller. The recursive step of Definition 1.6.1 defines a
number in terms of its predecessor.

The natural numbers have now been defined, but what does it mean to understand their
properties? We usually associate operations of addition, multiplication, and subtraction with
the natural numbers. We may have learned these by brute force, either through memorization
or tedious repetition. For the alien or a computer to perform addition, the meaning of “add”
must be appropriately defined. One cannot memorize the sum of all possible combinations
of natural numbers, but we can use recursion to establish a method by which the sum of any
two numbers can be mechanically calculated. The successor function is the only operation
on the natural numbers that has been introduced. Thus the definition of addition may use
only 0 and s.

Definition 1.6.2

In the following recursive definition of the sum of m and n, the recursion is done on n, the
second argument of the sum.

i) Basis:If n =0,thenm + n=m.
ii) Recursive step: m + s(n) = s(m + n).

iii) Closure: m + n = k only if this equality can be obtained from m + 0 = m using finitely
many applications of the recursive step.

The closure step is often omitted from a recursive definition of an operation on a given
domain. In this case, it is assumed that the operation is defined for all the elements of the
domain. The operation of addition given above is defined for all elements of N x N.

The sum of m and the successor of n is defined in terms of the simpler case, the sum of
m and n, and the successor operation. The choice of n as the recursive operand was arbitrary;
the operation could also have been defined in terms of m, with n fixed.

1.6 Recursive Definitions 25

Following the construction given in Definition 1.6.2, the sum of any two natural
numbers can be computed using 0 and s, the primitives used in the definition of the natural
numbers. Example 1.6.1 traces the recursive computation of 3 + 2.

Example 1.6.1

The numbers 3 and 2 abbreviate s(s(s(0))) and s(s(0)), respectively. The sum is computed
recursively by

5(s(s(0))) + s(s(0))
=s(s(s(s(0))) + 5(0))
=s(s(s(s(s(0))) + 0))
= s5(s(s(s(s(0))))) (basis case).
This final value is the representation of the number 5. o

Figure 1.1 illustrates the process of recursively generating a set X from basis X,. Each of
the concentric circles represents a stage of the construction. X, represents the basis elements
and the elements that can be obtained from them using a single application of an operation
defined in the recursive step. X; contains the elements that can be constructed with i or
fewer operations. The generation process in the recursive portion of the definition produces
a countably infinite sequence of nested sets. The set X can be thought of as the infinite union
of the X;’s. Let x be an element of X and let X; be the first set in which x occurs. This
means that x can be constructed from the basis elements using exactly j applications of the
operators. Although each element of X can be generated by a finite number of applications of
the operators, there is no upper bound on the number of applications needed to generate the
entire set X. This property, generation using a finite but unbounded number of operations,
is a fundamental property of recursive definitions.

The successor operator can be used recursively to define relations on the set N x N. The
Cartesian product N x N is often portrayed by the grid of points representing the ordered
pairs. Following the standard conventions, the horizontal axis represents the first component
of the ordered pair and the vertical axis the second. The shaded area in Figure 1.2(a) contains
the ordered pairs [i, j]linwhichi < j.This setis therelation LT, less than, that was described
in Section 1.2.

Example 1.6.2
The relation LT is defined as follows:
i) Basis: [0, 1] € LT.
ii) Recursive step: If [m, n] € LT, then [m, s(n)] € LT and [s(m), s(n)] € LT.

iii) Closure: [m, n] € LT only if it can be obtained from [0, 1] by a finite number of
applications of the operations in the recursive step.

26 Chapter 1 Mathematical Preliminaries

Recursive generation of X:
Xo = {x | x is a basis element}

X;11=X; U{x | x can be generated by i + 1 operations}
X ={x | x € X; for some j > 0}

FIGURE 1.1 Nested sequence of sets in recursive definition.

Using the infinite union description of recursive generation, the definition of LT gen-
erates the sequence LT; of nested sets where

LT, = {[0, 1]}

LT, =LT, U ([0, 2], [1,2]}

LT, =LT, U {[0, 3], [1, 3], [2, 3]}

LT; =LT, U {[0, 4], [1,4], [2, 4], [3, 4]}

LT; =LT;_,U{[j,i +1]11j=0,1,...,i}
: o

The construction of LT shows that the generation of an element in a recursively defined

set may not be unique. The ordered pair [1, 3] € LT, is generated by the two distinct
sequences of operations:

Basis: [0, 1] [0, 1]
I: [0,s(1)]=1[0,2] [s(0), s(HI=11, 2]
2: [s(0), s(2)1=11, 3] {1, s@1=11, 31.

1.7 Mathematical Induction 27

9 . O o o o o o o o o o o
8 o o 8 o o o o o o o o o o
7 s o 7 o o o o o o o o o o
6 e o o 6 \Q
5 T e e e e 5 \
4 e e e e o e 4
3 s o o o o o 3 :\\
2 e o e o o o o @ 2 e o o o o o o o o o
1 © o o o o o o o] ¢ o o o o o o o o o
0 ¢ o o o o o o o o o 0O ¢ ¢ o o o o o o o o
01 2 3 4 5 6 7 8 9 01 2 3 4 5 6 7 8 9
(a) (b)

FIGURE 1.2 Relations on N x N.

Example 1.6.3

The shaded area in Figure 1.2(b) contains all the ordered pairs with second component 3,
4, 5, or 6. A recursive definition of this set, call it X, is given below.

i) Basis: [0, 3], [0, 4], [O, 5], and [0, 6] are in X.
ii) Recursive step: If [m, n] € X, then [s(m), n] € X.

iii) Closure: [m, n] € X only if it can be obtained from the basis elements by a finite number
of applications of the operation in the recursive step.

The sequence of sets X; generated by this recursive process is defined by

X;={0j.3) [,4) [J.5) [, 6]1j=0,1,...,i}. o

- Mathematical Induction

Establishing relationships between the elements of sets and operations on the sets requires
the ability to construct proofs that verify the hypothesized properties. It is impossible to
prove that a property holds for every member in an infinite set by considering each element
individually. The principle of mathematical induction gives sufficient conditions for proving
that a property holds for every element in a recursively defined set. Induction uses the family
of nested sets generated by the recursive process to extend a property from the basis to the
entire set.

28 Chapter1 Mathematical Preliminaries

Principle of Mathematical Induction Let X be a set defined by recursion from the basis X,
and let Xy, X1, X5, . . ., X}, . . . be the sequence of sets generated by the recursive process.
Also let P be a property defined on the elements of X. If it can be shown that

i) P holds for each element in X,

ii) whenever P holds for every element in the sets Xy, Xj, . . . , X;, P also holds for every
element in X; |,

then, by the principle of mathematical induction, P holds for every element in X.

The soundness of the principle of mathematical induction can be intuitively exhibited
using the sequence of sets constructed in the recursive definition of X. Shading the circle X;
indicates that P holds for every element of X;. The first condition requires that the interior
set be shaded. Condition (ii) states that the shading can be extended from any circle to the
next concentric circle. Figure 1.3 illustrates how this process eventually shades the entire
set X.

The justification for the principle of mathematical induction should be clear from the
preceding argument. Another justification can be obtained by assuming that conditions (i)
and (ii) are satisfied but P is not true for every element in X. If P does not hold for all
elements of X, then there is at least one set X; for which P does not universally hold. Let
X be the first such set. Since condition (i) asserts that P holds for all elements of Xy, j
cannot be zero. Now P holds for all elements of X j—1 by our choice of j. Condition (ii)
then requires that P hold for all elements in X ;. This implies that there is no first set in the
sequence for which the property P fails. Consequently, P must be true for all the X;’s, and
therefore for X.

An inductive proof consists of three distinct steps. The first step is proving that the
property P holds for each element of a basis set. This corresponds to establishing condition
(i) in the definition of the principle of mathematical induction. The second is the statement
of the inductive hypothesis. The inductive hypothesis is the assumption that the property P
holds for every element in the sets Xg, Xj, . . . , X,,. The inductive step then proves, using
the inductive hypothesis, that P can be extended to each element in X,, ;. Completing the
inductive step satisfies the requirements of the principle of mathematical induction. Thus,
it can be concluded that P is true for all elements of X.

In Example 1.6.2, a recursive definition was given to generate the relation LT, which
consists of ordered pairs [i, j] that satisfy i < j. Does every ordered pair generated by
the definition satisfy this inequality? We will use this question to illustrate the steps of an
inductive proof on a recursively defined set.

The first step is to explicitly show that the inequality is satisfied for all elements in the
basis. The basis of the recursive definition of LT is the set {[0, 1]}. The basis step of the
inductive proof is satisfied since 0 < 1.

The inductive hypothesis states the assumption that x < y for all ordered pairs [x, y] €
LT,. In the inductive step we must prove that i < j for all ordered pairs [i, j] € LT, . The
recursive step in the definition of LT relates the sets LT, and LT,,. Let [i, j]be an ordered

29

-

/

1.7 Mathematical Induction

FIGURE 1.3 Principle of mathematical induction.

[s(x), s(y)] for some [x, y]€LT,.

[x, s(M)or [i, j]

pair in LT, .. Then either [, j]

[x, s(y)], then

By the inductive hypothesis, x < y. If [i, j]

J.

x<y<s(y)=

i

[s(x), s(»)], then

Similarly, if [i, j]

J.

i=s(x) <s(y)

30 Chapter1 Mathematical Preliminaries

In either case, i < j and the inequality is extended to all ordered pairs in LT, ;. This
completes the requirements for an inductive proof and consequently the inequality holds
for all ordered pairs in LT.

In the proof that every ordered pair [i, j]in the relation LT satisfies i < j, the inductive
step used only the assumption that the property was true for the elements generated by
the preceding application of the recursive step. This type of proof is sometimes referred
to as simple induction. When the inductive step utilizes the full strength of the inductive
hypothesis—that the property holds for all the previously generated elements—the proof
technique is called strong induction. Example 1.7.1 uses strong induction to establish a
relationship between the number of operators and the number of parentheses in an arithmetic
expression.

Example 1.7.1

A set E of arithmetic expressions is defined recursively from symbols {a, b}, operators +
and —, and parentheses as follows:
i) Basis: a and b are in E.
ii) Recursive step: If # and v are in E, then (4 + v), (4 — v), and (—v) are in E.
iii) Closure: An expression is in E only if it can be obtained from the basis by a finite
number of applications of the recursive step.

The recursive definition generates the expressions (a + b), (a + (b + b)), ((a +a) —
(b — a)) in one, two, and three applications of the recursive step, respectively. We will use
induction to prove that the number of parentheses in an expression u is twice the number
of operators. That is, n p) =2n,(u), where n p(u) is the number of parentheses in # and
n,(u) is the number of operators.

Basis: The basis for the induction consists of the expressions a and b. In this case,
np(a) =0=2n,(a) and np(b) =0=2n,(b).

Inductive Hypothesis: Assume that n,(u) = 2n,(u) for all expressions generated by n or
fewer iterations of the recursive step, that is, for all # in E,,.

Inductive Step: Let w be an expression generated by n + 1 applications of the recursive
step. Then w = (¥ + v), w = (u — v), or w = (—v) where u and v are strings in E,,. By the
inductive hypothesis,

np(u) =2n,(u)
np(v) =2n,(v).
Fw=wm+v)orw=w—v),
np(w)=npu)+ny(v)+2
no(w) = n, () + no(v) + 1.

1.7 Mathematical Induction 31

Consequently,
2n,(w) = 21,(u) + 2n,(v) +2 = n, (1) + 1, (V) + 2 =n,(w).
If w = (—v), then
2n,(w) =2(n,(v) + D = 2n,(v) + 2 =n,(v) +2 =n,(w).

Thus the property n,(w) = 2n,(w) holds for all w € E, ;| and we conclude, by mathemat-
ical induction, that it holds for all expressions in E.]

Frequently, inductive proofs use the natural numbers as the underlying recursively
defined set. A recursive definition of this set with basis {0} is given in Definition 1.6.1. The
nth application of the recursive step produces the natural number 7, and the corresponding
inductive step consists of extending the satisfaction of the property under consideration
fromO,...,nton + 1.

Example 1.7.2

Induction is used to prove that 0 + 1+ - - - + n = n(n + 1)/2. Using the summation nota-
tion. we can write the preceding expression as

Y i=nn+1/2.
i=0

Basis: The basis is n = 0. The relationship is explicitly established by computing the values
of each of the sides of the desired equality.

0
> i=0=00+1/2.
i=0
inductive Hypothesis: Assume for all valuesk =1, 2, . .., n that

k

Y i=k(k+D/2.

i=0
‘nductive Step: We need to prove that

n+l
Yi=+Dn+1+D/2=0+ DR +2)/2.
i=0

32 Chapter1 Mathematical Preliminaries

The inductive hypothesis establishes the result for the sum of the sequence containing n
or fewer integers. Combining the inductive hypothesis with the properties of addition, we
obtain

n+1 n
Z i= Z i+(n+1 (associativity of +)
=0 =0

=nn+1D/24+mn+1 (inductive hypothesis)
=mn+Dn/24+)) (distributive property)
=n+Dn+2)/2.

Since the conditions of the principle of mathematical induction have been established, we
conclude that the result holds for all natural numbers. o

Each step in the proof must follow from previously established properties of the
operators or the inductive hypothesis. The strategy of an inductive proof is to manipulate
the formula to contain an instance of the property applied to a simpler case. When this
is accomplished, the inductive hypothesis may be invoked. After the application of the
inductive hypothesis, the remainder of the proof often consists of algebraic manipulation
to produce the desired result.

Directed Graphs

A mathematical structure consists of a set or sets, distinguished elements from the sets,
and functions and relations on the sets. A distinguished element is an element of a set that
has special properties that differentiate it from the other elements. The natural numbers, as
defined in Definition 1.6.1, can be expressed as a structure (N, s, 0). The set N contains
the natural numbers, s is a unary function on N, and 0 is a distinguished element of N. Zero
is distinguished because of its explicit role in the definition of the natural numbers.

Graphs are frequently used to portray the essential features of a mathematical entity
in a diagram, which aids the intuitive understanding of the concept. Formally, a directed
graph is a mathematical structure consisting of a set N and a binary relation A on N. The
elements of N are called the nodes, or vertices, of the graph and the elements of A are called
arcs or edges. The relation A is referred to as the adjacency relation. A node y is said to
be adjacent to x when [x, y] € A. An arc from x to y in a directed graph is depicted by an
arrow from x to y. Using the arrow metaphor, y is called the head of the arc and x the tail.
The in-degree of a node x is the number of arcs with x as the head. The out-degree of x is
the number of arcs with x as the tail. Node a in Figure 1.4 has in-degree two and out-degree
one.

A path from a node x to a node y in a directed graph G = (N, A) is a sequence of
nodes and arcs xg, [xg, x1], x5, [X1, X2, X2, . . ., X _1s [Xu—1, X,], X, of G with x = xg and
y = x,. The node x is the initial node of the path and y is the terminal node. Each pair

1.8 Directed Graphs 33

N={a, b, c,d} Node In-degree Out-degree

A ={[a, b), [b,a], [b,c], a 2 1
[b, d], [c, b, [c, d], b 2 3

[d, al, [d, d]} c 1 2

d 3 2

FIGURE 1.4 Directed graph.

of nodes x;, x;; in the path is connected by the arc [x;, x; ;). The length of a path is the
number of arcs in the path. We will frequently describe a path simply by sequentially listing
its arcs.

There is a path of length zero from any node to itself called the null path. A path
of length one or more that begins and ends with the same node is called a cycle. A cycle
1s simple if it does not contain a cyclic subpath. The path [a, b], [, c], [c, d], [d, a] in
Figure 1.4 is a simple cycle of length four. A directed graph containing at least one cycle is
said to be cyclic. A graph with no cycles is said to be acyclic.

The arcs of a directed graph often designate more than the adjacency of the nodes. A
labeled directed graph is a structure (N, L, A) where L is the set of labels and A is a relation
on N X N x L. An element [x, y, v] € A is an arc from x to y labeled by v. The label
on an arc specifies a relationship between the adjacent nodes. The labels on the graph in
Figure 1.5 indicate the distances of the legs of a trip from Chicago to Minneapolis, Seattle,
San Francisco, Dallas, St. Louis, and back to Chicago.

An ordered tree, or simply a tree, is an acyclic directed graph in which each node is
connected by a unique path from a distinguished node called the root of the tree. The root
has in-degree zero and all other nodes have in-degree one. A tree is a structure (N, A, r)
where N is the set of nodes, A is the adjacency relation, and r € N is the root of the tree.
The terminology of trees combines a mixture of references to family trees and to those of
the arboreal nature. Although a tree is a directed graph, the arrows on the arcs are usually
omitted in the illustrations of trees. Figure 1.6(a) gives a tree T with root x;.

A node y is called a child of a node x, and x the parent of y, if y is adjacent to x.
Accompanying the adjacency relation is an order on the children of any node. When a tree
is drawn, this ordering is usually indicated by listing the children of a node in a left-to-right
manner according to the ordering. The order of the children of x; in T is x4, x5, and xg.

34 Chapter1 Mathematical Preliminaries

1607 ity

808 miles Minneapolis
400 mi;\
Chicago

San Francisco 285 miles
*5t. Louis
,//

/
/633 miles
/

/
*Dallas

FIGURE 1.5 Labeled directed graph.

A node with out-degree zero is called a leaf. All other nodes are referred to as internal
nodes. The depth of the root is zero; the depth of any other node is the depth of its parent
plus one. The height or depth of a tree is the maximum of the depths of the nodes in the
tree.

A node y is called a descendant of a node x, and x an ancestor of y, if there is a path
from x to y. With this definition, each node is an ancestor and descendant of itself. The
ancestor and descendant relations can be defined recursively using the adjacency relation
(Exercises 43 and 44). The minimal common ancestor of two nodes x and y is an ancestor
of both and a descendant of all other common ancestors. In the tree in Figure 1.6(a), the
minimal common ancestor of x;o and x}, is xs, of x}g and xg is x5, and of xjg and x4 is x;.

A subtree of a tree T is a subgraph of T that is a tree in its own right. The set of
descendants of a node x and the restriction of the adjacency relation to this set form a
subtree with root x. This tree is called the subtree generated by x.

The ordering of siblings in the tree can be extended to a relation LEFTOF on N x N.
LEFTOF attempts to capture the property of one node being to the left of another in the
diagram of a tree. For two nodes x and y, neither of which is an ancestor of the other,
the relation LEFTOF is defined in terms of the subtrees generated by the minimal common
ancestor of the nodes. Let z be the minimal common ancestor of x and y and let 2y, z5, . . .,
z,, be the children of z in their correct order. Then x is in the subtree generated by one of the
children of z, call it z;. Similarly, y is in the subtree generated by z; for some j. Since z is
the minimal common ancestor of x and y, i # j. If i < j, then [x, y] € LEFTOF; [y, x] €
LEFTOF otherwise. With this definition, no node is LEFTOF one of its ancestors. If x;3
were to the left of x,,, then x;¢ must also be to the left of xs, since they are both the first

1.8 Directed Graphs 35

X X3
X, x, X Xg
™S |
Xy X5 X X X X1
Xy X9 *n /lez in K
X3 X

(@) (b)

FIGURE 1.6 (a) Tree with root x;. (b) Subtree generated by x;.

child of their parent. The appearance of being to the left or right of an ancestor is a feature
of the diagram, not a property of the ordering of the nodes.

The relation LEFTOF can be used to order the set of leaves of a tree. The frontier of
a tree is constructed from the leaves in the order generated by the relation LEFTOF. The
frontier of T is the sequence xg, Xj9, X11, X6, X135 X145 Xg-

When a family of graphs is defined recursively, the principle of mathematical induction
can be used to prove that properties hold for all graphs in the family. We will use induction to
demonstrate a relationship between the number of leaves and the number of arcs in strictly
binary trees, trees in which each node is either a leaf or has two children.

Example 1.8.1

A tree in which each node has at most two children is called a binary tree. If each node is
a leaf or has exactly two children, the tree is called strictly binary. The family of strictly
binary trees can be defined recursively as follows:

i) Basis: A directed graph T = ({r}, @, r) is a strictly binary tree.

ii) Recursive step: If T; = (Ny, Ay, rp) and T, = (N, A,, ry) are strictly binary trees,
where N; and N, are disjoint and r ¢ N; U N,, then

T=(N1UN2U{I‘}, AIUAQU{[I‘, rl], [r, l’z]}, r)

is a strictly binary tree.

i) Closure: T is a strictly binary tree only if it can be obtained from the basis elements by
a finite number of applications of the construction given in the recursive step.

A strictly binary tree is either a single node or is constructed from two distinct strictly
binary trees by the addition of a root and arcs to the two subtrees. Let [v(T) and arc(T)
denote the number of leaves and arcs in a strictly binary tree T. We prove by induction that
21v(T) = 2 = arc(T) for all strictly binary trees.

36 Chapter1 Mathematical Preliminaries

Basis: The basis consists of strictly binary trees of the form ({r}, @, r). The equality clearly
holds in this case since a tree of this form has one leaf and no arcs.

Inductive Hypothesis: Assume that every strictly binary tree T generated by n or fewer
applications of the recursive step satisfies 2 [v(T) — 2 = arc(T).

Inductive Step: Let T be a strictly binary tree generated by n + 1 applications of the recursive
step in the definition of the family of strictly binary trees. T is built from a node r and two
previously constructed strictly binary trees T; and T, with roots r; and r,, respectively.

r

r/\r
ANAY

The node r is not a leaf since it has arcs to the roots of T; and T,. Consequently, [v(T) =
1v(Ty) + lv(T,). The arcs of T consist of the arcs of the component trees plus the two arcs
from r.

Since T; and T, are strictly binary trees generated by n or fewer applications of the
recursive step, we may employ the inductive hypothesis to establish the desired equality.
By the inductive hypothesis,

2v(T) —2=arc(Ty)
21v (Ty) —2=arc(Ty).

Now,
arc(T) = arc(Ty) + arc(T,p) + 2
=21v(T) —2+21v(Ty) —2+2
=2(Iv(T) +1v(Ty)) — 2
=2(lv(T)) — 2,
as desired. u]
Exercises

1. Let X =(1,2,3,4} and Y = {0, 2, 4, 6}. Explicitly define the sets described in parts
(a) to (e).
a) XUY dY-X
by XNY e) PX)
c) X-Y

Exercises 37

. LetX={a,b,cland Y = {1, 2}.

a) List all the subsets of X.
b) List the members of X x Y.
¢) List all total functions from Y to X.

.LetX={3"|n>0}and Y ={3n|n>0}. Provethat X C Y.
. LetX={n*+3n2+3n|n>0}and Y ={n>— 1|n > 0}. Prove that X =Y.
5. Prove DeMorgan’s Laws. Use the definition of set equality to establish the identities.

. Give functions f :N — N that satisfy the following.

a) f istotal and one-to-one but not onto.

b) f is total and onto but not one-to-one.

c) f istotal, one-to-one, and onto but not the identity.
d) f is not total but is onto.

7. Prove that the function f : N — N defined by f (n) = n? + 1is one-to-one but not onto.
8. Let f :R™ — R™ be the function defined by f(x) = 1/x, where R* denotes the set of

10.

11.

12.

13.

14.

15.

16.
17.

positive real numbers. Prove that f is one-to-one and onto.

. Give an example of a binary relation on N x N that is

a) reflexive and symmetric but not transitive.
b) reflexive and transitive but not symmetric.
¢) symmetric and transitive but not reflexive.

Let = be the binary relation on N defined by n = m if, and only if, n = m. Prove that
= is an equivalence relation. Describe the equivalence classes of =.

Let = be the binary relation on N defined by n = m for all n, m € N. Prove that = is
an equivalence relation. Describe the equivalence classes of =.

Show that the binary relation LT, less than, is not an equivalence relation.

Let =, be the binary relation on N defined by n =, m if n mod p = m mod p. For
p = 2, prove that =, is an equivalence relation. Describe the equivalence classes of

EP.

LetX;, . . ., X, be a partition of a set X. Define an equivalence relation = on X whose
equivalence classes are precisely the sets X;, . . . , X,.

A binary relation = is defined on ordered pairs of natural numbers as follows:
[m, n]=[j, k]if, and only if, m + k = n + j. Prove that = is an equivalence relation
inN x N.

Prove that the set of even natural numbers is denumerable.

Prove that the set of even integers is denumerable.

38

*18.
19.
20.
21.

22.

23.

24,

*25.

26.

27.

*28.
29.
30.

31

32.

33.

34.

Chapter 1 Mathematical Preliminaries

Prove that the set of nonnegative rational numbers is denumerable.
Prove that the union of two disjoint countable sets is countable.
Prove that there are an uncountable number of total functions from N to {0, 1}.

A total function f from N to N is said to be repeating if f(n) = f(n + 1) for some
n € N. Otherwise, f is said to be nonrepeating. Prove that there are an uncountable
number of repeating functions. Also prove that there are an uncountable number of
nonrepeating functions.

A total function f from N to N is monotone increasing if f(n) < f(n + 1) foralln €
N. Prove that there are an uncountable number of monotone increasing functions.

Prove that there are uncountably many total functions from N to N that have a fixed
point. See Example 1.4.3 for the definition of a fixed point.

A total function f from N to N is nearly identity if f(n) =n — 1, n, orn + 1for every
n. Prove that there are uncountably many nearly identity functions.

Prove that the set of real numbers in the interval [0, 1] is uncountable. Hint: Use the
diagonalization argument on the decimal expansion of real numbers. Be sure that each
number is represented by only one infinite decimal expansion.

Let F be the set of total functions of the form f : {0, 1} - N (functions that map from
{0, 1} to the natural numbers). Is the set of such functions countable or uncountable?
Prove your answer.

Prove that the binary relation on sets defined by X = Y if, and only if, card(X) =
card(Y) is an equivalence relation.

Prove the Schroder-Bernstein Theorem.
Give a recursive definition of the relation is equal to on N x N using the operator s.

Give a recursive definition of the relation greater than on N x N using the successor
operator s.

Give a recursive definition of the set of points [m, n] that lie on the line n = 3m in
N x N. Use s as the operator in the definition.

Give a recursive definition of the set of points [, n]that lie on or under the line n = 3m
in N x N. Use s as the operator in the definition.

Give a recursive definition of the operation of multiplication of natural numbers using
the operations s and addition.

Give a recursive definition of the predecessor operation

0 ifn=0

pred(n) = [n —1 otherwise

using the operator s.

3s.

36.

*37.

38.
39.
40.
41.
42.

43.

44.
45.

Exercises 39

Subtraction on the set of natural numbers is defined by

nem=in—m ifn>m
0 otherwise.

This operation is often called proper subtraction. Give a recursive definition of proper
subtraction using the operations s and pred.

Let X be a finite set. Give a recursive definition of the set of subsets of X. Use union
as the operator in the definition.

Give arecursive definition of the set of finite subsets of N. Use union and the successor
s as the operators in the definition.

Provethat24+5+8+ - -+ Bn—-1)=n@Bn+ 1)/2foralln > 0.
Prove that 1+ 2+ 2%+ ... 427 =2t _ {foralln > 0.

Prove 1+ 2" < 3" foralln > 2.

Prove that 3 is a factor of n3 — n + 3 foralln > 0.

Let P = {A, B} be a set consisting of two proposition letters (Boolean variables). The
set E of well-formed conjunctive and disjunctive Boolean expressions over P is defined
recursively as follows:

1) Basis: A, B €E.
ii) Recursive step: If u, v € E, then (u vV v) € Eand (u A v) € E.
iii) Closure: An expression is in E only if it is obtained from the basis by a finite
number of iterations of the recursive step.
a) Explicitly give the Boolean expressions in the sets Eg, E;, and E;.

b) Prove by mathematical induction that for every Boolean expression in E, the number
of occurrences of proposition letters is one more than the number of operators. For
an expression u, let n ,(«) denote the number of proposition letters in u and n,(u)
denote the number of operators in u.

¢) Prove by mathematical induction that, for every Boolean expression in E, the
number of left parentheses is equal to the number of right parentheses.

Give a recursive definition of all the nodes in a directed graph that can be reached by
paths from a given node x. Use the adjacency relation as the operation in the definition.
This definition also defines the set of descendants of a node in a tree.

Give a recursive definition of the set of ancestors of a node x in a tree.

List the members of the relation LEFTOF for the tree in Figure 1.6(a).

40 Chapter1 Mathematical Preliminaries

46. Using the tree below, give the values of each of the items in parts (a) to (e).

T
X X3 X4
/l\ /\
X5 Xg X, X X
| | ™S
x|10 X1 X2 i3
x X5 *16

a) the depth of the tree
b) the ancestors of xq;
c¢) the minimal common ancestor of x4 and x;;, of x5 and x;
d) the subtree generated by x,
e) the frontier of the tree
47. Prove that a strictly binary tree with n leaves contains 2n — 1 nodes.

48. A complete binary tree of depth n is a strictly binary tree in which every node on levels
1,2,...,n— lis aparent and each node on level n is a leaf. Prove that a complete
binary tree of depth n has 2"+! — 1 nodes.

Bibliographic Notes

The topics presented in this chapter are normally covered in a first course in discrete math-
ematics. A comprehensive presentation of the discrete mathematical structures important
to the foundations of computer science can be found in Bobrow and Arbib [1974].

There are a number of classic books that provide detailed presentations of the topics
introduced in this chapter. An introduction to set theory can be found in Halmos [1974],
Stoll [1963], and Fraenkel, Bar-Hillel, and Levy [1984]. The latter begins with an excellent
description of Russell’s paradox and other antinomies arising in set theory. The diagonal-
ization argument was originally presented by Cantor in 1874 and is reproduced in Cantor
[1947]. The texts by Wilson [1985], Ore [1963], Bondy and Murty [1977], and Busacker
and Saaty [1965] introduce the theory of graphs. Induction, recursion, and their relationship
to theoretical computer science are covered in Wand [1980].

Languages

The concept of language includes a variety of seemingly distinct categories including
natural languages, computer languages, and mathematical languages. A general definition
of language must encompass all of these various types of languages. In this chapter, a purely
set-theoretic definition of language is given: A language is a set of strings over an alphabet.
The alphabet is the set of symbols of the language and a string over the alphabet is a finite
sequence of symbols from the alphabet.

Although strings are inherently simple structures, their importance in communication
and computation cannot be overemphasized. The sentence “The sun did not shine” is a string
of English words. The alphabet of the English language is the set of words and punctuation
symbols that can occur in sentences. The mathematical equation

p=nxrxt)/v

is a string consisting of variable names, operators, and parentheses. A digital photograph is
stored as a bit string, a sequence of 0’s and 1’s. In fact, all data stored and manipulated by
computers are represented as bit strings. As computer users, we frequently input information
to the computer and receive output in the form of text strings. The source code of a computer
program is a text string made up of the keywords, identifiers, and special symbols that
constitute the alphabet of the programming language. Because of the importance of strings,
we begin this chapter by formally defining the notion of string and studying the properties
of operations on strings.

Languages of interest are not made up of arbitrary strings; not all strings of English
words are sentences and not all strings of source code are legitimate computer programs.
Languages consist of strings that satisfy certain requirements and restrictions that define the

42 Chapter2 Languages

syntax of the language. In this chapter, we will use recursive definitions and set operations
to enforce syntactic restrictions on the strings of a language.

We will also introduce the family of languages defined by regular expressions. A regular
expression describes a pattern and the language associated with the regular expression
consists of all strings that match the pattern. Although we introduce the regular expressions
via a set-theoretic construction, as we progress we will see that these languages occur
naturally as the languages generated by regular grammars and accepted by finite-state
machines. The chapter concludes by examining the use of regular expressions in searching
and pattern matching.

Strings and Languages

The description of a language begins with the identification of its alphabet, the set of symbols
that occur in the language. The elements of the language are finite-length strings of alphabet
symbols. Consequently, the study of languages requires an understanding of the operations
that generate and manipulate strings. In this section we give precise definitions of a string
over an alphabet and of the basic string operations.

The sole requirement for an alphabet is that it consists of a finite number of indivisible
objects. The alphabet of a natural language, like English or French, consists of the words
and punctuation marks of the language. The symbols in the alphabet of the language are
considered to be indivisible objects. The word language cannot be divided into lang and
uage. The word format has no relation to the words for and mat; these are all distinct
members of the alphabet. A string over this alphabet is a sequence of words and punctuation
symbols. The sentence that you have just read is such a string. The alphabet of a computer
language consists of the permissible keywords, identifiers, and symbols of the language. A
string over this alphabet is a sequence of source code.

Because the elements of the alphabet of a language are indivisible, we will generally
denote them by single characters. Letters a, b, ¢, d, e, with or without subscripts, are
used to represent the elements of an alphabet and X is used to denote an alphabet. Strings
over an alphabet are represented by letters occurring near the end of the alphabet. In
particular, p, g, 4, v, w, x, y, zareused to denote strings. The notation used for natural
languages and computer languages provides an exception to this convention. In these cases,
the alphabet consists of the indivisible elements of the particular language.

A string has been defined informally as a sequence of elements from an alphabet. In
order to establish the properties of strings, the set of strings over an alphabet is defined
recursively. The basis consists of the string containing no elements. This string is called the
null string and denoted A. The primitive operator used in the definition consists of adjoining
a single element from the alphabet to the right-hand side of an existing string.

Definition 2.1.1
Let X be an alphabet. T*, the set of strings over X, is defined recursively as follows:

2.1 Strings and Languages 43

i) Basis: A € T*.
ii) Recursive step: If w € X* and a € X, then wa € T*.

iii) Closure: w € X* only if it can be obtained from A by a finite number of applications of
the recursive step.

For any nonempty alphabet £, X* contains infinitely many elements. If ¥ = {a}, T*
contains the strings A, a, aa, aaa, The length of a string w, intuitively the number of
elements in the string or formally the number of applications of the recursive step needed to
construct the string from the elements of the alphabet, is denoted length(w). If T contains
n elements, there are n* strings of length k in £*.

Example 2.1.1
Let © ={a, b, c}. The elements of X* include
LengthO: A
Lengthl: a b ¢
Length 2: aa ab ac ba bb bc ca cb cc
Length 3: aaa aab aac aba abb abc aca achb acc

baa bab bac bba bbb bbc bca bchb bcc
caa cab cac cba cbb cbc cca ccb ccc [m}

By our informal definition, a language consists of strings over an alphabet. For example,
the English language consists of those strings of words that we call sentences. Not all strings
of words form sentences, only those satisfying certain conditions on the order and type of
the constituent words. The collection of rules, requirements, and restrictions that specify
the correctly formed sentences defines the syntax of the language. These observations lead
to our formal definition of language; a language consists of a subset of the set of all possible
strings over the alphabet.

Definition 2.1.2
A language over an alphabet X is a subset of X*.

Since strings are the elements of a language, we must examine the properties of strings
and the operations on them. Concatenation, taking two strings and “gluing them together," is
the fundamental operation in the generation of strings. A formal definition of concatenation
is given by recursion on the length of the second string in the concatenation. At this point,
the primitive operation of adjoining a single member of the alphabet to the right-hand side
of a string is the only operation on strings that has been introduced. Thus any new operation
must be defined in terms of it.

Definition 2.1.3
Letu, v € *. The concatenation of ¥ and v, written uv, is a binary operation on X * defined

44 Chapter2 Languages

i) Basis: If length(v) =0, then v = A and uv = u.

ii) Recursive step: Let v be a string with length(v) = n > 0. Then v = wa, for some string
w with lengthn — land a € X, and uv = (uw)a.

Example 2.1.2
Let u =ab, v =ca, and w = bb. Then
uv =abca vw = cabb
(uv)w = abcabb u(vw) = abcabb. |

The result of the concatenation of #, v, and w is independent of the order in which
the operations are performed. Mathematically, this property is known as associativity.
Theorem 2.1.4 proves that concatenation is an associative binary operation.

Theorem 2.1.4
Letu, v, w € X* Then (uv)w = u(vw).

Proof. The proof is by induction on the length of the string w. The string w was chosen for
compatibility with the recursive definition of strings, which builds on the right-hand side of
an existing string.

Basis: length(w) = 0. Then w = A, and (uv)w = uv by the definition of concatenation. On
the other hand, u(vw) = u(v) = uv.

Inductive Hypothesis: Assume that (uv)w = u(vw) for all strings w of length n or less.

Inductive Step: We need to prove that (uv)w = u(vw) for all strings w of length n + 1. Let
w be such a string. Then w = xa for some string x of length n and a € ¥ and

(uv)w = (uv)(xa) (substitution, w = xa)
= ((uv)x)a (definition of concatenation)

= (u(vx))a (inductive hypothesis)

= u((vx)a) (definition of concatenation)
=u(v(xa)) (definition of concatenation)
=u(vw) (substitution, xa = w). n

Since associativity guarantees the same result regardless of the order of the operations,
parentheses are omitted from a sequence of applications of concatenation. Exponents are
used to abbreviate the concatenation of a string with itself. Thus uu may be written u?,
uuu may be written 43, and so on. For completeness, u°, which represents concatenating
u with itself zero times, is defined to be the null string. The operation of concatenation
is not commutative. For strings ¥ = ab and v = ba, uv = abba and vu = baab. Note that
u? = abab and not aabb = a’b*.

Substrings can be defined using the operation of concatenation. Intuitively, u is a
substring of v if # “occurs inside of”” v. Formally, u is a substring of v if there are strings

2.2 Finite Specification of Languages 45

x and y such that v = xuy. A prefix of v is a substring u in which x is the null string in the
decomposition of v. That is, v = uy. Similarly, u is a suffix of v if v = xu.

The reversal of a string is the string written backward. The reversal of abbc is cbba.
Like concatenation, this unary operation is also defined recursively on the length of the
string. Removing an element from the right-hand side of a string constructs a smaller string
that can then be used in the recursive step of the definition. Theorem 2.1.6 establishes the
relationship between the operations of concatenation and reversal.

Definition 2.1.5
Let u be a string in T*. The reversal of u, denoted u*, is defined as follows:
i) Basis: If length(u) =0, then u = A and AR = A.

ii) Recursive step: If length(u) =n > 0, then u = wa for some string w with lengthn — 1

and some a € ¥, and u® = awX.

Theorem 2.1.6

Letu, v € T* Then (uv)R = vRuR.

Proof. The proof is by induction on the length of the string v.

Basis: If length(v) =0, then v = A and (uv)® = uR. Similarly, vRuR = ARyR = yR,
Inductive Hypothesis: Assume (#v)® = v®uR for all strings v of length n or less.

Inductive Step: We must prove that, for any string v of length n + 1, (uv)® = vZuR. Let v
be a string of length n + 1. Then v = wa, where w is a string of length n and a € . The
inductive step is established by

@v)® = wwa)k

= ((uw)a)® (associativity of concatenation)

=auw)k (definition of reversal)
=awru® (inductive hypothesis)
= (aw®ur (associativity of concatenation)
= (wa)® uk (definition of reversal)

= vRyR, ™

Finite Specification of Languages

A language has been defined as a set of strings over an alphabet. Languages of interest do not
consist of arbitrary sets of strings but rather of strings that satisfy some prescribed syntactic
requirements. The specification of a language requires an unambiguous description of
the strings of the language. A finite language can be explicitly defined by enumerating
its elements. Several infinite languages with simple syntactic requirements are defined
recursively in the examples that follow.

40 Chapter2 Languages

Example 2.2.1

The language L of strings over {a, b} in which each string begins with an a and has even
length is defined by
i) Basis: aa, ab € L.
ii) Recursive step: If # € L, then uaa, uab, uba, ubb € L.
iii) Closure: A string u# € L only if it can be obtained from the basis elements by a finite
number of applications of the recursive step.

The strings in L are built by adjoining two elements to the right-hand side of a previously
constructed string. The basis ensures that each string in L begins with an a. Adding
substrings of length two maintains the even parity. o

Example 2.2.2

The language L over the alphabet {a, b} defined by
i) Basis: A € L;
ii) Recursive step: If u € L, then ua, uab € L;

iii) Closure: A string u € L only if it can be obtained from the basis element by a finite
number of applications of the recursive step;

consists of strings in which each occurrence of b is immediately preceded by an a. For
example, A, a, abaab are in L and bb, bab, abb are not in L. o

The recursive step in the preceding examples concatenated elements to the end of an
existing string. Breaking a string into substrings permits the addition of elements anywhere
within the original string. This technique is illustrated in the following example.

Example 2.2.3
Let L be the language over the alphabet {a, b} defined by

i) Basis: A € L.
ii) Recursive step: If u € and u can be written u = xyz, then xaybz € L and xaybz € L.
iii) Closure: A string u € L only if it can be obtained from the basis element by a finite
number of applications of the recursive step.

The language L consists of all strings with the same number of a’s and b’s. The first
construction in the recursive step, xaybz € L, consists of the following three actions:
1. Select a string u that is already in L.

2. Divide u into three substrings x, y, z such that # = xyz. Note that any of the substrings
may be A.

3. Insert an a between x and y and a b between y and z.

2.2 Finite Specification of Languages 47

Taken together, the two rules can be intuitively interpreted as “insert one a and one b
anywhere in the string u." o

Recursive definitions provide a tool for defining the strings of a language. Exam-
ples 2.2.1, 2.2.2, and 2.2.3 have shown that requirements on order, positioning, and parity
can be obtained using a recursive generation of strings. The process of generating strings us-
ing a single recursive definition, however, is unsuitable for enforcing the complex syntactic
requirements of natural or computer languages.

Another technique for constructing languages is to use set operations to construct
complex sets of strings from simpler ones. An operation defined on strings can be extended
to an operation on sets, hence on languages. Descriptions of infinite languages can then be
constructed from finite sets using the set operations. The next two definitions introduce
operations on sets of strings that will be used for both language definition and pattern
specification.

Definition 2.2.1
The concatenation of languages X and Y, denoted XY, is the language

XY ={uv|ueXandveY}

The concatenation of X with itself » times is denoted X”. X? is defined as {1}.

Example 2.2.4
Let X ={a, b, c} and Y = {abb, ba}. Then

XY = {aabb, babb, cabb, aba, bba, cba}

X?=

X!'=X ={a, b, ¢}

X2=XX= {aa, ab, ac, ba, bb, bc, ca, cb, cc}

X3 =X*X = {aaa, aab, aac, aba, abb, abc, aca, ach, acc,

baa, bab, bac, bba, bbb, bbc, beca, bcb, bec,

caa, cab, cac, cha, cbb, cbc, cca, ccb, ccc}. o

The sets in the previous example should look familiar. For each i, X’ contains the strings
of lengthi in X£* given in Example 2.1.1. This observation leads to another set operation, the
Kleene star of a set X, denoted X*. Using the * operator, the strings over a set can be defined
with the operations of concatenation and union rather than with the primitive operation of
Definition 2.1.1.

48 Chapter2 Languages

Definition 2.2.2
Let X be a set. Then

o o
x*=Jx* ad Xt=[JX.
i=0 i=1

The set X* contains all strings that can be built from the elements of X. If X is an
alphabet, X+ is the set of all nonnull strings over X. An alternative definition of X* using
concatenation and the Kleene star is X+ = XX*.

The definition of a formal language requires an unambiguous specification of the strings
that belong to the language. Describing languages informally lacks the rigor required for a
precise definition. Consider the language over {a, b} consisting of all strings that contain the
substring bb. Does this mean that a string in the language contains exactly one occurrence
of bb, or are multiple substrings bb permitted? This could be answered by specifically
describing the strings as containing exactly one or at least one occurrence of bb. However,
these types of questions are inherent in the imprecise medium provided by natural languages.

The precision afforded by set operations can be used to give an unambiguous descrip-
tion of the strings of a language. Example 2.2.5 gives a set theoretic definition of the strings
that contain the substring bb. In this definition it is clear that the language contains all strings
in which bb occurs at least once.

Example 2.2.5

The language L = {a, b}*{bb}{a, b}* consists of the strings over {a, b} that contain the
substring bb. The concatenation of {bb}, which contains the single string bb, ensures the
presence of bb in every string in L. The sets {a, b}* permit any number of a’s and b’s, in
any order, to precede and follow the occurrence of bb. In particular, additional copies of
the substring bb may occur before or after the occurrence ensured by the concatenation of
{bb}. m]

Example 2.2.6

Concatenation can be used to specify the order of components of strings. Let L be the
language that consists of all strings that begin with aa or end with bb. The set {aa}{a, b}*
describes the strings with prefix aa. Similarly, {a, b}*{bb} is the set of strings with suffix
bb. Thus L = {aa}{a, b}* U {a, b}*{bb}. (n]

Example 2.2.7

LetL; = {bb} and L, = {A, bb, bbbb} be languages over {b}. The languages L] and L] both
contain precisely the strings consisting of an even number of b’s. Note that A, with length
zero, is an element of both L} and L. o

2.3 Regular Sets and Expressions 49

Example 2.2.8

The set {aa, bb, ab, ba}* consists of all even-length strings over {a, b}. The repeated
concatenation constructs strings by adding two elements at a time. The set of strings of
odd length can be defined by {a, b}* — {aa, bb, ab, ba}*. This set can also be obtained by
concatenating a single element to the even-length strings. Thus the odd-length strings are
also defined by {aa, bb, ab, ba}*{a, b}. O

Regular Sets and Expressions

In the previous section we used set operations to construct new languages from existing
ones. The operators were selected to ensure that certain patterns occurred in the strings of
the language. In this section we follow the approach of constructing languages from set
operations but limit the sets and operations that are allowed in the construction process.

A set of strings is regular if it can be generated from the empty set, the set containing the
null string, and sets containing a single element of the alphabet using union, concatenation,
and the Kleene star operation. The regular sets, defined recursively in Definition 2.3.1,
comprise a family of languages that play an important role in formal languages, pattern
recognition, and the theory of finite-state machines.

Definition 2.3.1
Let X be an alphabet. The regular sets over X are defined recursively as follows:

i) Basis: @, {1} and {a}, for every a € X, are regular sets over X.
ii) Recursive step: Let X and Y be regular sets over X. The sets

XUy

XY

X*
are regular sets over X.

iii) Closure: X is a regular set over X only if it can be obtained from the basis elements by
a finite number of applications of the recursive step.

A language is called regular if it is defined by a regular set. The following examples
show how regular sets can be used to describe the strings of a language.

Example 2.3.1

The language from Example 2.2.5, the set of strings containing the substring bb, is a regular
set over {a, b}. From the basis of the definition, {a} and {b} are regular sets. The union
of {a} and {b} and the Kleene star operation produce {a, b}*, the set of all strings over

{a, b}. By concatenation, {b}{b} = {bb} is regular. Applying concatenation twice yields
{a, b}*{bbHa, b}*. o

Example 2.3.2

The set of strings that begin and end with an a and contain at least one b is regular over
{a, b}. The strings in this set could be described intuitively as “an a, followed by any string,
followed by a b, followed by any string, followed by an a.” The concatenation

{aHa, b}*{b}a, b}*{a}
exhibits the regularity of the set. o

By definition, regular sets are those that can be built from the empty set, the set
containing the null string, and the sets containing a single element of the alphabet using
the operations of union, concatenation, and Kleene star. Regular expressions are used to
abbreviate the descriptions of regular sets. The regular sets @, {1}, and {a} are represented
by @, A, and a, removing the need for the set brackets { }. The set operations of union, Kleene
star, and concatenation are designated by U, *, and juxtaposition, respectively. Parentheses
are used to indicate the order of the operations.

Definition 2.3.2
Let X be an alphabet. The regular expressions over X are defined recursively as follows:

i) Basis: @, A, and a, for every a € X, are regular expressions over .
ii) Recursive step: Let # and v be regular expressions over X. The expressions

((7A9R)]

(uv)

(*)
are regular expressions over X.

i) Closure: u is a regular expression over X only if it can be obtained from the basis
elements by a finite number of applications of the recursive step.

Since union and concatenation are associative, parentheses can be omitted from ex-
pressions consisting of a sequence of one of these operations. To further reduce the num-
ber of parentheses, a precedence is assigned to the operators. The priority designates the
Kleene star as the most binding operation, followed by concatenation and union. Employ-
ing these conventions, regular expressions for the sets in Examples 2.3.1 and 2.3.2 are
(a U b)*bb(a U b)* and a(a U b)*b(a U b)*a, respectively. The notation u™ is used to ab-
breviate the expression uu*. Similarly, u? denotes the regular expression uu, u® denotes
u?u, and so on.

2.3 Regular Sets and Expressions 51

Example 2.3.3

The set {bawab | w € {a, b}*} is regular over {a, b}. The following table demonstrates the
recursive generation of a regular set and the corresponding regular expression definition of
the language. The column on the right gives the justification for the regularity of each of
the components used in the recursive operations.

Set Expression Justification

1. {a} a Basis

2. {b} b Basis

3. {a}{b} = {ab} ab 1, 2, concatenation

4. {a} U {b} = {a, b} aub 1, 2, union

5. {b}{a} = {ba} ba 2, 1, concatenation

6. {a, b}* (a U b)* 4, Kleene star

7. {ba}{a, b}* ba(a L b)* 5, 6, concatenation

8. {ba}{a, b}*{ab} ba(a U b)* ab 7, 3, concatenation m]

The preceding example illustrates how regular sets and regular expressions are gener-
ated from the basic regular sets. Every regular set can be obtained by a finite sequence of
operations in the manner shown in Example 2.3.3.

A regular expression defines a pattern and a string is in the language of the expression
only if it matches the pattern. Concatenation specifies order; a string w is in #v only if it
consists of a string from u followed by one from v. The Kleene star permits repetition and
U selection. The pattern specified by the regular expression in Example 2.3.3 requires ba
to begin the string, ab to end it, and any combination of a’s and b’s to occur between the
required prefix and suffix. The following examples further illustrate the ability of regular
expressions to describe patterns.

Example 2.3.4

The regular expressions (a U b)*aa(a U b)* and (a U b)*bb(a U b)* represent the regular
sets with strings containing aa and bb, respectively. Combining these two expressions with
the U operator yields the expression (@ U b)*aa(a U b)* U (a U b)*bb(a U b)* representing
the set of strings over {a, b} that contain the substring aa or bb. o

Example 2.3.5

A regular expression for the set of strings over {a, b} that contain exactly two b’s must
explicitly ensure the presence of two b’s. Any number of a’s may occur before, between,
and after the b’s. Concatenating the required subexpressions produces a*ba*ba*. u]

32 Chapter2 Languages

Example 2.3.6

The regular expressions

i) a*ba*b(a L b)*
ii) (a U b)*ba*ba*
iii) (a U b)*b(a U b)*b(a U b)*
define the set of strings over {a, b} containing two or more b’s. As in Example 2.3.5, the

presence of at least two b’s is ensured by the two instances of the expression b in the
concatenation. o

Example 2.3.7

Consider the regular set defined by the expression a*(a*ba*ba*)*. The expression inside
the parentheses is the regular expression from Example 2.3.5 representing the strings with
exactly two b’s. The Kleene star generates the concatenation of any number of these strings.
The result is the null string (no repetitions of the pattern) and all strings with a positive, even
number of b’s. Strings consisting of only a’s are not included in (@*ba*ba*)*. Concatenating
a* to the beginning of the expression produces the set consisting of all strings with an even
number of b’s. Another regular expression for this set is a*(ba*ba™)*. o

Example 2.3.8

The ability of substrings to share elements complicates the construction of a regular expres-
sion for the set of strings that begin with ba, end with ab, and contain the substring aa. The
expression ba(a U b)*aa(a U b)*ab explicitly inserts each of the three components. Every
string represented by this expression must contain at least four a’s. However, the string baab
satisfies the specification but only has two a’s. A regular expression for this language is

ba(a U b)*aa(a U b)*ab
U baa(a U b)*ab
U ba(a U b)*aab
U baab. a

The construction of a regular expression is a positive process; features of the desired
strings are explicitly inserted into the expression using concatenation, union, or the Kleene
star. There is no negative operation to omit strings that have a particular property. To
construct a regular expression for the set of strings that do not have a property, it is necessary

2.3 Regular Sets and Expressions 53

to formulate the condition in a positive manner and construct the regular expression using
the reformulation of the language. The next two examples illustrate this approach.

Example 2.3.9

To construct a regular expression for the set of strings over {a, b} thatdo notend in aaa, we
must ensure that aaa is not a suffix of any string described by the expression. The possible
endings for a string with a b in one of the final three positions are b, ba, or baa. The first
part of the regular expression

(@Ub)*(bUbalUbaa)UrUaUaa

defines these strings. The final three expressions represent the special case of strings of
length zero, one, and two that do not contain a b. o

Example 2.3.10

The language L defined by ¢*(b U ac*)* consists of all strings over {a, b, c} that do not
contain the substring bc. The outer ¢* and the ac* inside the parentheses allow any number
of a's and c’s to occur in any order. A b can be followed by another b or a string from
ac*. The a at the beginning of ac* blocks a b from directly preceding a c. To help develop
your understanding of the representation of sets by expressions, convince yourself that both
acabacc and bbaaacc are in the set represented by c*(b U ac*)*. o

Examples 2.3.6 and 2.3.7 show that the regular expression definition of a language is not
unique. Two expressions that represent the same set are called equivalent. The identities in
Table 2.1 can be used to algebraically manipulate regular expressions to construct equivalent
expressions. These identities are the regular expression formulation of properties of union,
concatenation, and the Kleene star operation.

Identity 5 follows from the commutativity of the union of sets. Identities 9 and 10 are the
distributive laws of union and concatenation translated to the regular expression notation.
The final set of expressions provides a number of equivalent representations of all strings
made from elements of u and v. The identities in Table 2.1 can be used to simplify or to
establish the equivalence of regular expressions.

Example 2.3.11

A regular expression is constructed to represent the set of strings over {a, b} that do not
contain the substring aa. A string in this set may contain a prefix of any number of b’s.
All a’s must be followed by at least one b or terminate the string. The regular expression
b*(ab*)* U b*(ab™)*a generates the desired set by partitioning it into two disjoint subsets;

TABLE 2.1 Regular Expression Identities

1. Gu=ud=90

2. Au=ul=u

3. F*=xr

4, A=A

5. uUv=vUu

6. uUf=u

7. uUu=u

8. u* = (u*)*

9. u(vUw)=uvUuw
10. Uv)w=uwUvw
11. (uv)*u = u(vu)*

12. VU v)* =@w* Uv)*

=u*u Uv)* = uUvu*)*
- (u*v*)* - u*(vu*)*

= (u*v)*u*

the first consists of strings that end in b and the second of strings that end in a. This
expression can be simplified using the identities from Table 2.1 as follows:

b*(@abM)* U b*(ab*)*a
=b*@bH)*(AUa)
= b*(abb*)*(AU a)
=((bUab)*(AUa). (]

While regular expressions allow us to describe many complex patterns, it is important
to note that there are languages that cannot be defined by any regular expression. In Chapter
6 we will see that there is no regular expression that defines the language {a’b* | i > 0}.

Regular Expressions and Text Searching

A common application of regular expressions, perhaps the most common for the majority
of computer users, is the specification of patterns for searching documents and files. In
this section we will examine the use of regular expressions in two types of text searching
applications.

The major difference between the use of regular expressions for language definition and
for text searching is the scope of the desired match. A string is in the language defined by
aregular expression if the entire string matches the pattern specified by regular expression.

2.4 Regular Expressions and Text Searching 55

For example, a string matches ab* only if it begins with an a and is followed by onc or
more b's.

In text searching we are looking for the occurrence of a substring in the text that matches
the desired pattern. Thus the words

about
abbot
rehabilitate
tabulate
abominable

would all be considered to match the patter ab* . In fact, abominable would match it twice!

This bnngs upa difference belwcen lwo types of text searching that can be described

ff-1 hing. By off-line search we mean thata

search program is run, the input to the program is a pattern and a file, and the output consists

of the lines or the text in the file that match the pattern. Frequently, off-line file searching

is done using operating system utilities or programs written in a language designed for

searching. GREP and awk are examples of the utilities available for file searching, and

Perl is a programming language designed for file searching. We will use GREP, which is

an acronym for “Global search for Regular Expression and Print," to illustrate this type of
regular expression search.

Online search tools are provided by web browsers, text editors, and word processing
systems. The objective is to interactively find the first, the next, or to sequentially find all
occurrences of substrings that match the search pattern. The “Find” command in Microsoft
Word will be used to demonstrate the differences between online and off-line pattern
matching.

Since the desired patterns are generally entered on a keyboard, the regular expression
notation used by search utilities should be concise and not contain superscripts. Although
there is no uniform syntax for regular expressions in search applications, the notation
used in the majority of the applications has many features in common. We will use the
extended regular expression notation of GREP to illustrate the description of patterns for
text searching.

The alphabet of the file or document frequently consists of the ASCII character set,
which is given in Appendix III. This is considerably larger than the two or three element
alphabets that we have used in most of our examples of regular expressions. With the
alphabet {a. b}, the regular expression for any string is (a U b)*. To write the expression
for any st.nng of ASCII characters using this format would reqmre severa! lines and would
be ient to enter on a Two i bracket

and range i were introduced to facilitate the description of patterns
over an extended alphabet.

The bracket notation [] is used to represent the union of alphabet symbols. For ex-
ample, (abcd] is equivalent to the expression (a U b U ¢ U d). Adding a caret immediately

56 Chapter2 Languages

TABLE 2.2 Extended Regular Expression Operations

Operation Symbol Example Regular Expression
concatenation ab ab
[a-c][AB] aAUaBUbLAUbBBUCcAUCB
Kleene star * [ab] * (aV b)*
disjunction | [ab]*|A (@Ub)*UA
Zero or more + [ab}+ (aub)*
Zero or one ? a? (@Ui)
one character . a.a a(aVUb)a if ¥ ={a, b}
n-times {n} a{4} aaaa = a*
n or more times {n,} a{4,} aaaaa*
n to m times {n,m} a{4,6} aaaa U aaaaa U aaaaaa

after the left bracket produces the complement of the union, thus [“abcd] designates all
characters other than a, b, ¢, and d.

Range expressions use the ordering of the ASCII character set to describe a sequence
of characters. For example, A-Z is the range expression that designates all capital letters. In
the ASCII table these are the characters numbered from 65 to 90. Range expressions can
be arguments in bracket expressions; [a-zA-Z0-9] represents the set of all letters and digits.
In addition, certain frequently occurring subsets of characters are given there own mne-
monic identifiers. For example, [:digit:], [:alpha:], and [:alnum:] are shorthand
for [0-9], [a-zA-Z], and [a-zA-Z0-9]. The extended regular expression notation also
includes symbols \< and \> that require the match to occur at the beginning or the end of
a word.

Along with the standard operations of U, concatenation, and *, the extended regular
expression notation of GREP contains additional operations on expressions. These opera-
tions do not extend the type of patterns that can be expressed, rather they are introduced
to simplify the representation of patterns. A description of the extended regular expression
operations are given in Table 2.2. A set of priorities and parentheses combine to define the
scope of the operations.

The input to GREP is a pattern and file to be searched. GREP performs a line-by-line
search on the file. If a line contains a substring that matches the pattern, the line is printed
and the search continues with the subsequent line. To demonstrate pattern matching using
extended regular expressions, we will search a file caesar containing Caesar’s comments to
his wife in Shakespeare’s Julius Caesar, Act 2, Scene 2.

Cowards die many times before their deaths;

The valiant never taste of death but once.

0f all the wonders that I yet have heard.

It seems to me most strange that men should fear;

2.4 Regular Expressions and Text Searching 57

Seeing that death, a necessary end,
Will come when it will come.

We begin by looking for matches of the pattern m [a-z] n. This is matched by a substring
of length three consisting of an m and an n separated by any single lowercase letter. The result
of the search is

C:> grep -E "m[a-z]n" caesar
Cowards die many times before their deaths;
It seems to me most strange that men should fear;

The option -E in the GREP call indicates that the extended regular expression notation
is used to describe the pattern, and the quotation marks delimit the pattern. The substring
man in many and the word men match this pattern and the lines containing these strings are
printed.

The search is now changed to find occurrences of m and n separated by any number of
lowercase letters and blanks.

C:> grep -E "m[a-z]*n" caesar

Cowards die many times before their deaths;

It seems to me most strange that men should fear;
Will come when it will come.

The final line is added to the output because the pattern is matched by the substring me
vhen. The pattern m[a-z] *n is matched six times in the line

It seems to me most strange that men should fear;

However, GREP does not need to find all matches; finding one is sufficient for a line to be
selected for output.

The extended regular expression notation can be used to describe more complicated
patterns of interest that may occur in text. Consider the task of finding lines in a text file
that contain a person’s name. To determine the form of names, we i itially consider the
potential strings that occur as parts of a name:

i) First name ori itial: [A-Z] [a-z]+] [A-Z][.]

ii) Middle name, initial, or neither: ([A-Z] [a-z]+] [A-2])[.])?
iii) Family name: [A-Z] [a-z]+
A string that can occur in the first position is either a name or an i itial. In the former case,
the string begins with a capital letter followed by a string of lowercase letters. An initial is
simply a capital letter followed by a period. The same expressions can be used for middle
names and family names. The ? indicates that no middle name or i itial is required. These
expressions are concatenated with blanks

([A-2] [a-2]+1 [(A-2] (.1) [1 (([A-Z] (a-2]+I[A-Z] (.1) [1)7([A-2Z] (a-2]+)

to produce a general pattern for matching names.

58 Chapter2 Languages

The preceding expression will match E. B. White, Edgar Allen Poe, and Alan Turing.
Since pattern matching is restricted to the form of the strings and not any underlying meaning
(that is, pattern matching checks syntax and not semantics), the expression will also match
Buckingham Palace and U. S. Mail. Moreover, the pattern will not match Vincent van Gogh,
Dr. Watson, or Aristotle. Additional conditions would need to be added to the expression
to match these variations of names.

Unlike off-line analysis, search commands in web browsers or word processors interac-
tively find occurrences of strings that match an input pattern. A substring matching a pattern
may span several lines. The pattern m*n in the Microsoft Word “Find” command searches
for substrings beginning with m and ending with n; any string may separate the m and n.
The search finds and highlights the first substring beginning at or after the current location
of the cursor that matches the pattern. Repeating the search by clicking “next" highlights
successive matches of the pattern. The substrings identified as matches of m*n in the file
caesar follow, with the matching substrings highlighted.

Cowards die many times before their deaths;

Cowards die many times before their deaths;
The valiant never taste of death but once.

It seems to me most strange that men should fear;
It seems to me most strange that men should fear;
It seems to me most strange that men should fear;
It seems to me most strange that men should fear;

Will come when it will come.

Notice that not all matching substrings are highlighted. The pattern m*n is matched by
any substring that begins with an occurrence of m and extends to any subsequent occurrence
of n. The search only highlights the first matching substring for every m in the file.

In Chapter 6 we will see that a regular expression can be converted into a finite-state
machine. The computation of the resulting machine will find the strings or substrings
that match the pattern described by the expression. The restrictions on the operations
used in regular expressions—intersection and set difference are not allowed—facilitate the
automatic conversion from the description of a pattern to the implementation of a search
algorithm.

Exercises

1. Give arecursive definition of the length of a string over Z. Use the primitive operation
from the definition of string.

Exer ises 99

2. Using induction on i, prove that (w®)’ = (w")® for any string w and all i > 0.

. Prove, using induction on the length of the string, that (w®)® = w for all strings w € T*.

4. Let X ={aa, bb)and Y = (A, b, ab).

10.

11.

a) List the strings in the set XY.

b) How many strings of length 6 are there in X*?

c¢) List the strings in the set Y* of length three or less.
d) List the strings in the set X*Y* of length four or less.

. Let L be the set of strings over {a, b} generated by the recursive definition

i) Basis: b €L.
it) Recursive step: if u is in L then ub € L, uab €L, and uba €L, and bua €L.

iii) Closure: a string v is in L only if it can be obtained from the basis by a finite
number of iterations of the recursive step.

a) List the elements in the sets Lo, L, and L,.
b) Is the string bbaaba in L? If so, trace how it is produced. If not, explain why not.
c) Is the string bbaaaabb in L? If so, trace how it is produced. If not, explain why not.

. Give a recursive definition of the set of strings over {a, b} that contain at least one b and

have an even number of a’s before the first b. For example, bab, aab, and aaaabababab
are in the set, while aa, abb are not.

. Give a recursive definition of the set {a'b/ |0 <i < j < 2i}.

. Give a recursive definition of the set of strings over {a, b} that contain twice as many

a'sasb’s.

. Prove that every string in the language defined in Example 2.2.1 has even length. The

proof is by induction on the recursive generation of the strings.

Prove that every string in the language defined in Example 2.2.2 has at least as many a’s
as b's. Let n,(u) denote the number of a’s in the string u and n, (1) denote the number
of b’s in u. The inductive proof should establish the inequality n, (u) > n,(u).

Let L be the language over {a, b} generated by the recursive definition
i) Basis: A € L.
ii) Recursive step: If u € L then aaub € L.

iii) Closure: A string w is in L only if it can be obtained from the basis by a finite
number of applications of the recursive step.

a) Give the sets Ly, L, and L, generated by the recursive definition.
b) Give an implicit definition of the set of strings defined by the recursive definition.

¢) Prove by mathematical induction that for every string « in L, the number of a’s in
u is twice the number b’s in u. Let n,(u) and n,(u) denote the number of a’s and
the number of b’s in u, respectively.

60 Chapter2 Languages

12. A palindrome over an alphabet T is a string in X that is spelled the same forward
and backward. The set of palindromes over X can be defined recursively as follows:

i) Basis: A and a, for all a € X, are palindromes.
ii) Recursive step: If w is a palindrome and a € X, then awa is a palindrome.

iii) Closure: w is a palindrome only if it can be obtained from the basis elements by
a finite number of applications of the recursive step.

The set of palindromes can also be defined by {w | w = wX}. Prove that these two
definitions generate the same set.

13. LetL, = {aaa}*, L, = {a, b}{a, b}{a, b}{a, b}, and L3 = L;. Describe the strings that
are in the languages L,, L3, and L;N L;.

For Exercises 14 through 38, give a regular expression that represents the described set.

14. The set of strings over {a, b, c} in which all the a’s precede the b’s, which in turn
precede the c’s. It is possible that there are no a’s, b’s, or c’s.

15. The same set as Exercise 14 without the null string.

16. The set of strings over {a, b, c} with length three.

17. The set of strings over {a, b, ¢} with length less than three.

18. The set of strings over {a, b, c} with length greater than three.

19. The set of strings over {a, b} that contain the substring ab and have length greater than
two.

20. The set of strings of length two or more over {a, b} in which all the a’s precede the b’s.
21. The set of strings over {a, b} that contain the substring aa and the substring bb.

22. The set of strings over {a, b} in which the substring aa occurs at least twice. Hint:
Beware of the substring aaa.

23. The set of strings over {a, b, c} that begin with a, contain exactly two b’s, and end with
cc.

*24. The set of strings over {a, b} that contain the substring ab and the substring ba.

25. The set of strings over {a, b, c} in which every b is immediately followed by at least
one c.

26. The set of strings over {a, b} in which the number of a’s is divisible by three.
27. The set of strings over {a, b, ¢} in which the total number of »’s and c’s is three.

*28. The set of strings over {a, b} in which every a is either immediately preceded or
immediately followed by b, for example, baab, aba, and b.

29. The set of strings over {a, b, c} that do not contain the substring aa.

30. The set of strings over {a, b} that do not begin with the substring aaa.

31. The set of strings over {a, b} that do not contain the substring aaa.
*32. The set of strings over {a, b} that do not contain the substring aba.

33.
34,
3s.
36.
37.
* 38.

39.

41.

Bibliographic Notes 61

The set of strings over {a, b} in which the substring aa occurs exactly once.

The set of strings of odd length over {a, b} that contain the substring bb.

The set of strings of even length over {a, b, c} that contain exactly one a.

The set of strings of odd length over {a, b} that contain exactly two b’s.

The set of strings over {a, b} with an even number of a’s or an odd number of b’s.

The set of strings over {a, b} with an even number of a’s and an even number of b’s.
This is tricky; a strategy for constructing this expression is presented in Chapter 6.

Use the regular expression identities in Table 2.1 to establish the following identities:
a) (ba)t(a*b* U a*) = (ba)*bat(b* U L)

b) b*(a*b* UA)b =b(b*a* Ur)b*

c) (@Ub)*=(aUb)b*

d) (aUb)* = (a* VU ba*)*

e) (@aUb)* = (b*(aVur)b*)*

Write the output that would be printed by a search of the file caesar described in Secti
2.4 with the following extended regular expressions.

a) [Cc]

b) [K-2]

¢) \<[a-z]{6}\>

d) \<[a-z]{6}\>|\<[a-2]{7}\>

Design an extended regular expression to search for addresses. For thi
address will consist of

i) a number,
il) a street name, and
iii) a street type identifier or abbreviation.

Your pattern should match addresses of the form 1428 Elm Street, 51095 Tobacco
Rd., and 1600 Pennsylvania Avenue. Do not be concerned if your regular expres-
sion does not identify all possible addresses.

Bibliographic Notes

Regular expressions were developed by Kleene [1956] for studying the properties of neural
networks. McNaughton and Yamada [1960] proved that the regular sets are closed under
the operations of intersection and complementation. An axiomatization of the algebra of
regular expressions can be found in Salomaa [1966].

PART I

Grammars, Automata,
and Languages

he syntax of a language specifies the permissible forms of the strings in the language.

In Chapter 2, set-theoretic operations and recursive definitions were used to generate
the strings of a language. These string-building tools, although primitive, were adequate
for enforcing simple constraints on the order and the number of elements in a string. We
now introduce a rule-based approach for defining and generating the strings of a language.
This approach to language definition has its origin in both linguistics and computer science:
linguistics in the attempt to formally describe natural language and computer science in the
need to have precise and unambiguous definitions of high-level programming languages.
Using terminology from the linguistic study, the string gencration systems are called
grammars.

In Chapter 3 we introduce two families of grammars, regular and context-free gram-
mars. A family of grammars is defined by the form of the rules and the conditions under
which they are applicable. A rule specifies a string transformation, and the strings of a lan-
guage are generated by a sequence of rule applications. The flexibility provided by rules
has proved to be well suited for defining the syntax of programming languages. The gram-
mar that describes the programming language Java is used to demonstrate the context-free
definition of several common programming language constructs.

After defining languages by the generation of strings, we turn our attention to the
mechanical verification of whether a string satisfies a desired condition or matches a desired
pattern. The family of deterministic finite automata is the first in a series of increasingly
powerful abstract machines that we will use for pattern matching and language definition.
We refer to the machines as abstract because we are not concerned with constructing
hardware or software implementations of them. Instead, we are intercsted in determining
the computational capability of the machines. The input to an abstract machine is a string,
and the result of a computation indicates the acceptability of the input string. The language
of a machine is the set of strings accepted by the computations of the machine.

A deterministic finite automaton is a read-once machine in which the instruction to be
executed is determined by the state of the machine and the input symbol being processed. Fi-
nite automata have many applications including the lexical analysis of computer programs,
digital circuit design, text searching, and pattern recognition. Kleene's theorem shows that
the languages accepted by finite automata are precisely those that can be described by reg-
ular expressions and generated by regular grammars. A more powerful class of read-once
machines, pushdown automata, is created by augmenting a finitc automaton with a stack
memory. The addition of the external memory permits pushdown automata to accept the
context-free languages.

The correspondence between the generation of language by grammars and their accep-
tance by machines is a central theme of this book. The relationship between machines and
grammars will continue with the families of unrestricted grammars and Turing machines
introduced in Part ITI. The regular, context-free, and unrestricted grammars are members of
the Chomsky hierarchy of grammars that will be examined in Chapter 10.

CHAPTER 3

Context-Free Grammars

In this chapter we present a rule-based approach for generating the strings of a language.
Borrowing the terminology of natural languages, we call a syntactically correct string a
sentence of the language. A small subset of the English language is used to illustrate the
components of the string-generation process. The alphabet of our miniature language is the
set {a, the, John, Jill, hamburger, car, drives, eats, slowly, frequently, big, juicy, brown}. The
elements of the alphabet are called the terminal symbols of the language. Capitalization,
punctuation, and other important features of writtcn languages are ignored in this example.

The sentence-generation procedure should construct the strings John eats a hamburger
and Jill drives frequently. Strings of the form Jill and car John slowly should not result from
this process. Additional symbols are used during the construction of sentences to enforce
the syntactic restrictions of the language. These intermediate symbols, known as variables
or nonterminals, are represented by enclosing them in angle brackets ().

Since the generation procedure constructs sentences, the initial variable is named
(sentence). The generation of a sentence consists of replacing variables by strings of a
specific form. Syntactically correct replacements are given by a set of transformation rules.
Two possible rules for the variable {sentence) are

1. (sentence} — (noun-phrase){verb-phrase)

2. (sentence) — (noun-phrase)(verb){direct-object-phrase)
An informal interpretation of rule 1 is that a sentence may be formed by a noun phrase
followed by a verb phrase. At this point, of course, neither of the variables (noun-phrase) nor
(verb-phrase) has been defined. The second rule gives an alternative definition of sentence,
a noun phrase followed by a verb followed by a direct object phrase. The existence of

multiple transformations indicates that syntactically correct sentences may have several
different forms.

65

66 Chapter 3 Context-Free Grammars

A noun phrase may contain either a proper or a common noun. A common noun is
preceded by a determiner, while a proper noun stands alone. This feature of the syntax of
the English language is represented by rules 3 and 4.

Rules for the variables that generate noun and verb phrases are given below. Rather
than rewriting the left-hand side of alternative rules for the same variable, we list the right-
hand sides of the rules sequentially. Numbering the rules is not a feature of the generation
process, merely a notational convenience.

(noun-phrase) — (proper-noun)
— (determiner) (common-noun)
{proper-noun) — John
— Jill
(common-noun) — car
— hamburger

© ®©® N AW

(determiner) — a

10. —> the

11. (verb-phrase) — (verb){adverb)
12. — (verb)

13. (verb) — drives

14. — eats

15. (adverb) — slowly

16. — frequently

With the exception of (direct-object-phrase), rules have been defined for each of the
variables that have been introduced.

The application of a rule transforms one string to another. The transformation consists
of replacing an occurrence of the variable on the left-hand side of the — with the string on
the right-hand side. The generation of a sentence consists of repeated rule applications to
transform the variable (sentence) into a string of terminal symbols.

For example, the sentence Jill drives frequently is generated by the following transfor-
mations:

Derivation Rule Applied
(sentence) = (noun-phrase)(verb-phrase) 1

= (proper-noun){verb-phrase) 3

= Jill (verb-phrase) 6

= Jill (verb){adverb) 11

= Jill drives (adverb) 13

=> Jill drives frequently 16

Chapter 3 Context-Free Grammars 67

The symbol =, used to designate a rule application, is read “derives.”” The column on the
right gives the number of the rule that was applied to achieve the transformation. The
derivation terminates when all variables have been removed from the derived string.
The resulting string, consisting solely of terminal symbols, is a sentence of the language.
The set of terminal strings derivable from the variable (sentence) is the language generated
by the rules of our example.

To complete the set of rules, the transformations for (direcr-object-phrase) must be
given. Before designing rules, we must decide upon the form of the strings that we wish
to generate. In our language we will allow the possibility of any number of adjectives,
including repetitions, to precede the direct object. This requires a set of rules capable of
generating each of the following strings:

John eats a hamburger

John eats a big hamburger

John eats a big juicy hamburger

John eats a big brown juicy hamburger

John eats a big big brown juicy hamburger

As can be scen by the potential repetition of the adjectives, the rules of the grammar must be
capable of generating strings of arbitrary length. The use of a recursive definition allows the
elements of an infinite set to be generated by a finite specification. Following that example,
recursion is introduced into the string-generation process, that is, into the rules.

17. (adjective-list) — (adjective){adjective-list)
18. - A

19. (adjective) — big

20. — juicy

21. — brown

The definition of (adjective-list) follows the standard recursive pattern. Rule 17 defines
(adjective-list) in terms of itself, while rule 18 provides the basis of the recursive definition.
The X on the right-hand side of rule 18 indicates that the application of this rule replaces
(adjective-list) with the null string. Repeated applications of rule 17 generate a sequence
of adjectives. Rules for (direct-object-phrase) are construcled using {adjective-list):

22. (direct-object-phrase) — (adjective-list){proper-noun)
23. — (determiner)(udjective-list)(common-noun)

68 Chapter3 Context-Free Grammars

The sentence John eats a big juicy hamburger can be derived by the following sequence of
rule applications:

Derivation Rule Applied

(sentence) = (noun-phrase) (verb) (direct-object-phruse) 2
= (proper-noun) (verb) (direct-object-phrase) 3
=» John (verb) (direct-object-phrase) 5
= John eats (direct-object-phrase) 14
=> John eats (determiner) {(adjective-list) (common-noun) 23
= John eats a (adjective-list) (common-noun) 9
=> John eats a (adjective) (adjective-list) (common-noun) 17
= John eats a big (adjective-list) (common-noun) 19
= John eats a big (adjective) (adjective-list) {common-noun) 17
=> John eats a big juicy (adjective-list) (common-noun) 20
= John eats a big juicy (common-noun) 18
= John eats a big juicy hamburger 8

The generation of sentences is strictly a function of the rules. The string the car eats
slowly is a sentence in the language since it has the form (noun-phrase) (verb-phrase)
outlined by rule 1. This illustrates the important distinction between syntax and semantics;
the generation of sentences is concerned with the form of the derived string without regard
to any underlying meaning that may be associated with the terminal symbols.

By rules 3 and 4, a noun phrase consists of a proper noun or a common noun preceded
by a determiner. The variable (adjective-list) may be incorporated into the (noun-phrase)
rules, permitting adjectives to modify a noun:

3. (noun-phrase) — (adjective-list) (proper-noun)
4. — (determiner) {adjective-list) (common-noun)

With this modification, the string big John eats frequently can be derived from the variable
(sentence).

Context-Free Grammars and Languages

We will now define a formal system, the context-free grammar, that is used to generate
the strings of a language. The natural language example was presented to motivate the
components and features of string generation using a context-free grammar.

Definition 3.1.1

A context-free grammar is a quadruple (V, X, P, §) where V is a finite set of variables,
X (the alphabet) is a finite set of terminal symbols, P is a finite set of rules, and § is a

3.1 Context-Free Grammars and Languages 69

distinguished element of V called the start symbol. The sets V and X are assumed to be
disjoint.

A rule is written A = w where A € Vand w € (V U X)*. A rule of this form is called
an A rule, referring to the variable on the left-hand side. Since the null string is in (V U)%,
A may occur on the right-hand side of a rule. A rule of the form A — A is called a null or
A-rule.

Italics are used to denote the variables and terminals of a context-free grammar.
Terminals are represented by lowercase letters occurring at the beginning of the alpha-
bet, that is, a, b, ¢, Following the conventions introduced for strings, the letters
P q. 4, v, w, x, y, 2z, with or without subscripts, represent arbitrary members of
(V U X)*. Variables will be denoted by capital letters. As in the natural language example,
variables are referred to as the nonterminal symbols of the grammar.

Grammars are used to generate properly formed strings over the prescribed alphabet.
The fundamental step in the generation process consists of transforming a string by the
application of a rule. The application of A — w to the variable A in uAv produces the
string wwv. This is denoted # Av = uwv. The prefix u and suffix v define the context in
which the variable A occurs. The grammars introduced in this chapter are called context-
free because of the general applicability of the rules. An A rule can be applied to the variable
A whenever and wherever it occurs; the context places no limitations on the applicability
of a rule.

A string w is derivable from v if there is a finite sequence of rule applications that
transforms v to w; that is, if a sequence of transformations

VD W DW= DWW, =W

can be constructed from the rules of the grammar. The derivability of w from v is denoted
v = w. The set of strings derivable from v, being constructed by a finite but unbounded
number of rule applications, can be defined recursively.

Definition 3.1.2

let G=(V, Z, P, §) be a context-free grammar and v € (V U X)*. The set of strings
derivable from v is defined recursively as follows:

i) Basis: v is derivable from v.
ii) Recursive step: If u = x Ay is derivable from v and A — w € P, then xwy is derivable
from v.

iii) Closure: A string is derivable from v only if it can be generated from v by a finite
number of applications of the recursive step.

Note that the definition of a rule uses the — notation, while its application uses =.
The symbol => denotes derivability and > designates derivability utilizing one or more
rule applications. The length of a derivation is the number of rule applications employed.
A derivation of w from v of length n is denoted v = w. When more than one grammar is

70 Chapter3 Context-Free Grammars

being considered, the notation v ;: w will be used to explicitly indicate that the derivation
utilizes rules of the grammar G.

A language has been defined as a set of strings over an alphabet. A grammar consists of
an alphabet and a method of generating strings. These strings may contain both variables and
terminals. The start symbol of the grammar, assuming the role of (sentence) in the natural
language example, initiates the process of generating acceptable strings. The language of
the grammar G is the set of terminal strings derivable from the start symbol. We now state
this as a definition.

Definition 3.1.3
Let G=(V, I, P, §) be a context-free grammar.

i) A string w € (V U)* is a sentential form of G if there is a derivation § = w in G.
ii) A string w € £* is a sentence of G if there is a derivation § => w in G.
iii) The language of G, denoted L(G), is the set {w € T* | § = w}).

A sentential form is a string that is derivable from the start symbol of the grammar.
Referring back to the natural language example, the derivation

(sentence) = {(noun-phrase){verb-phrase)
= (proper-noun)(verb-phrase)
= Jill {verb-phrase)

shows that Jill (verb-phrase) is a sentential form of that grammar. It is not yet a sentence,
it still contains variables, but it has the form of a sentence. A sentence is a sentential form
that contains only terminal symbols. The language of a grammar consists of the sentences
generated by the grammar. A set of strings over an alphabet X is said to be a context-free
language if it is generated by a context-free grammar.

The use of recursion is necessary for a finite sct of rules to generate strings of arbitrary
length and languages with infinitely many strings. Recursion is introduced into grammars
through the rules. A rule of the form A — u Av is called recursive since it defines the variable
A in terms of itself. Rules of the form A — Av and A — u A are called left-recursive and
right-recursive, respectively, indicating the location of recursion in the rule.

Because of the importance of recursive rules, we examine the form of strings produced
by repeated applications of the recursive rules A — aAb, A - aA, A — Ab,and A — AA:

A= aAb A=aA A= Ab A= AA
= aAb =aA = Ab = AAA
= aa Abb = aaA = Abb = AAAA

= aaa Abbb = aaaA = Abbb = AAAAA

A derivation employing the rule A — a Ab generates any number of a’s followed by the same
number of b’s. Rules of this form are necessary for producing strings that contain symbols in

3.1 Context-Free Grammars and Languages 71

G=(V,X,P,S)

V={S, A}

T ={a, b}

P: S— AA

A—> AAA|bA|Ab|a
S=AA S= AA S= AA S= AA

=aA = AAAA = Aa =aA
= aAAA = aAAA = AAAa = aAAA
= abAAA = abAAA = AAbAa = aAAa
= abaAA = abaAA = AAbaa = abAAa
= ababAA = ahabAA = AbAbaa = abAbAa
= ababaA = ababaA = Ababaa = ababAa
=> ababaa = ababaa => ababaa = ababaa

(@) (b) () (d)
FIGURE3.1 Sample derivations of ababaa in G.

matched pairs, such as left and right parentheses. The right recursive rule A — a A generates
any number of a’s preceding the variable A, and the left recursive A — Ab generates any
number of &’s following A. Each application of the rule A — AA, which is both left- and
right-recursive, produces an additional A. The repetitive application of a recursive rule can
be terminated at any time by the application of a different A rule.

A variable A is called recursive if there is a derivation A & uAv. A derivation of the
form A = w = uAv, where A is not in w, is said to be indirectly recursive. Note that, due
to indirect recursion, a variable A may be recursive even if there are no recursive A rules.

A grammar G that generates the language consisting of strings with a positive, even
number of a’s is given in Figure 3.1. The rules are written using the shorthand A — u | v
to abbreviate A — « and A — v. The vertical bar | is read “or." Four distinct derivations
of the terminal string ababaa are shown in Figure 3.1. The definition of derivation permits
the transformation of any variable in the string. Each rule application in derivations (a)
and (b) in the figure transforms the first variable occurring in a left-to-right reading of the
string. Derivations with this property are called leftmost. Derivation (c) is rightmost, since
the rightmost variable has a rule applied to it. Thesc derivations demonstrate that there may
be more than one derivation of a string in a context-free grammar.

Figure 3.1 exhibits the flexibility of derivations in a context-free grammar. The essential
feature of a derivation is not the order in which the rules are applied, but the manner in
which each variable is transformed into a terminal string. The transformation is graphically
depicted by a derivation or parse tree. The tree structure indicates the rule applied to each
variable but does not designate the order of the rule applications. The leaves of the derivation
tree can be ordered to yield the result of a derivation represented by the tree.

Definition 3.1.4

LetG=(V, T, P, S) be a context-free grammar and let § = w be a derivation in G. The
derivation tree, DT, of § => w is an ordered tree that can be built iteratively as follows:

i) Initialize DT with root S.

72 Chapter3 Context-Free Grammars

ii) If A = x;x, . . . x,, with x; € (V U) is the rule in the derivation applied to the string
uAv, then add x4, x5, . . . , x, as the children of A in the tree.

iii) If A — A is the rule in the derivation applied to the string # Av, then add A as the only
child of A in the tree.

The ordering of the leaves also follows this iterative process. Initially, the only leaf
is S and the ordering is obvious. When the rule A — xyx; . . . x, is used to generate the
children of A, each x; becomes a leaf and A is replaced in the ordering of the leaves by
the sequence x;, Xy, . . . , X,. The application of a rule A — A simply replaces A by the
null string. Figure 3.2 traces the construction of the tree corresponding to derivation (a) of
Figure 3.1. The ordering of the leaves is given along with each of the trees.

The order of the leaves in a derivation tree is independent of the derivation from which
the tree was generated. The ordering provided by the iterative process is identical to the
ordering of the leaves given by the relation LEFTOF in Section 1.8. The frontier of the
derivation tree is the string generated by the derivation.

Figure 3.3 gives the derivation trees for each of the derivations in Figure 3.1. The trees
generated by derivations (a) and (d) are identical, indicating that each variable is transformed
into a terminal string in the same manner. The only difference between these derivations is
the order of the rule applications.

A derivation tree can be used to produce several derivations that generate the same
string. The rule applied to a variable A can be reconstructed from the children of A in the
tree. The rightmost derivation

S= AA

= AAAA
= AAAa
= AAbAa
= AAbaa
= AbAbaa
= Ababaa
=> ababaa

is obtained from the derivation tree (a) in Figure 3.3. Notice that this derivation is different
from the rightmost derivation (c) in Figure 3.1. In the latter derivation, the second variable in
the string A A is transformed using the rule A — a, while A — AAAisused in the preceding
derivation. The two trees graphically illustrate the distinct transformations.

As we have seen, the context-free applicability of rules allows a great deal of flexibility
in the constructions of derivations. Lemma 3.1.5 shows that a derivation may be broken into
subderivations from each variable in the string. Derivability was defined recursively, the
length of derivations being finite but unbounded. Consequently, we may use mathematical
induction to establish that a property holds for all derivations from a given string.

3.1 Context-Free Grammars and Languages 73

Ordering
Derivation Tree of Leaves
M S S
= AA S AA
, /\A
= dA S a A
) /\A
/
a
= aAAA S a A A A
, /\A
yd TN
a A A A
= abAAA S a, b AAA
, /\A
/ T
a A A A
pd
b A
= abuAA S abaAA
, /\A
yd PN
a A A A
b/‘

A
:

FIGURE 3.2 Construction of derivation tree. {continued on next page)

74 Chapter3 Context-Free Grammars

Ordering
Derivation Tree of Leaves
= ababAA S a b abA A
A/\ A
s TN
a A A A
1IN
b A b A
I
a
= ababaA Ky ababaA
. /\)
~ TN
a A A A
A1 N
b A b A
| I
a a
=> ababaa M a b a b, aa
A/\ A
7 TN
a A A A
10 IO
b A b A a
) l

FIGURE 3.2 (continued)

Lemma 3.1.5
Let G be a context-free grammar and v = w be a derivation in G where v can be written

v= w]A1w2A2 ces ka/,wk+1,
with w; € Z*. Then there are strings p; € (X U V)* that satisfy

i) 4% p;
il) w=wpwyp; - . . WePrWiyy

k
ll.l) Z i =n.
i=l

3.1 Context-Free Grammars and Languages 75

S S
) /\A) /\A
e T PN N
a A A A A A A 17}

yd N T N
b A b A a a b A b A

| | | l

(a) (b)
S S
/\ /\

A A A a a A A A
ST N A NN
a_ b" A b o4 b" A b A

| | | |
a a a a
(c) (d)

FIGURE 3.3 Trees corresponding to the derivations in Figure 3.1.

Proof. The proof is by induction on the length of the derivation of w from v.

Basis: The basis consists of derivations of the form v = w. In this case, w = v and each A;
is equal to the corresponding p;. The desired derivations have the form A; 5 pi.

Inductive Hypothesis: Assume that all derivations v => w can be decomposed into derivations
from the A;’s, the variables of v, which together form a derivation of w from v of length n.

Inductive Step: Let v 2% w be a derivation in G with
v= U)|A|U)2A2 e kakwk+],
where w; € £*. The derivation can be written v = u = w. This reduces the original
derivation to the application of a single rule and derivation of length n, the latter of which
is suitable for the invocation of the inductive hypothesis.
The first rule application in the derivation, v = , transforms one of the variables in v,

call it Aj,with a rule of the form

AJ o d ulBlung e u,,,Bmu,,H_,.

76 Chapter3 Context-Free Grammars

where each u; € %*. The string u is obtained from v by replacing A; by the right-hand side
of the A j rule. Making this substitution, ¥ can be written as

wlAl e Aj_leulBlusz “ee u,,,B,,,u,,,_,.,wj,,_,Aj_'_l e kakwk_,_l.

Since w is derivable from u using n rule applications, the inductive hypothesis asserts
that there are strings py, . . ., Pj_1, 41, - - - s Gm»> @0d Py, . . ., py that satisfy

i) Ay pifori=1,....j—1Lj+1,....,k
B;gifori=1,...,m;

) w=wipywy...pj_1Wjl1g14s - . - UGy W) 41Pj 41 - - Wi PrWi; and

= k m
lll) Zﬁ"’ Z t,~+Zs,~=n.
i=1 i=j+! i=1
Combining therule A; — u;B1#;B; . . . Uy, B,y with the derivations B; = g;, we obtain
a derivation

X
A; S uqUsqs - - UpGmlmy1 = Pj

whose length is the sum of lengths of the derivations from the B;’s plus one. The derivations
A; = p;,i=1,...,k, provide the desired decomposition of the derivation of w from v.
n

Lemma 3.1.5 demonstrates the flexibility and modularity of derivations in context-
free grammars. Every complex derivation can be broken down into subderivations of the
constiluent variables. This modularity will be exploited in the design of complex languages
by using variables to define smaller and more managcable subsets of the language. These
independently defined sublanguages are then combined by additional rules to produce the
syntax of the entire language.

Examples of Grammars and Languages

Context-freec grammars have been introduced to generate languages. Formal languages, like
computer languages and natural languages, have requirements that the strings must satisfy
in order to be syntactically correct. Grammars for these languages must generate precisely
the desired strings and no others. There are two natural approaches that we may take to help
develop our understanding of the rclationship belween grammars and languages. One is
to begin with an informal specification of a language and then construct a grammar that
generates it. This is the approach followed in the design of programming languages—
the syntax is selected and the language designer produces a set of rules that defines the
correctly formed strings. Conversely, we may begin with the rules of a grammar and analyze
them to determine the form of the strings of the language. This is the approach frequently
taken when checking the syntax of the source code of a computer program. The syntax
of the programming is specified by a set of grammatical rules, such as the definition of

3.2 Examples of Grammars and Languages 77

the programming language Java given in Appendix IV. The syntax of constants, identifiers,
statements, and entire programs is correct if the source code is derivable from the appropriate
variables in the grammar.

Initially, determining the relationship between strings and rules may seem difficult.
With experience, you will recognize frequently occurring patterns in strings and the rules
that produce them. The goal of this section is to analyze examples to help you develop an
intuitive understanding of language definition using context-free grammars.

In each of the examples a grammar is defined by listing its rules. The variables and
terminals of the grammar are those occurring in the rules. The variable § is the start symbol
of each grammar.

Example 3.2.1

Let G be the grammar given by the rules
S — aSa|aBa
B— bB|b.

Then L(G) = {a"b™a" | n > 0, m > 0}. The rule S — aSa recursively builds an equal
number of a’s on each end of the string. The recursion is terminated by the application
of the rule S — aBa, ensuring at least one leading and one trailing a. The recursive B rule
then generates any number of b's. To remove the variable B from the string and obtain a
sentence of the language, the rule B — b must be applied, forcing the presence of at least
one b. m|

Example 3.2.2

The relationship between the number of leading a’s and trailing d’s in the language
{@"b"™c™d? | n > 0, m > 0} indicates that a recursive rulc is needed to generate them.
The same is true of the b’s and ¢’s. Derivations in the grammar

S—>aSdd| A
A= bAc | bc

generate strings in an outside-to-inside manner. The S rules produce the a's and d’s while
the A rules generate the b’s and ¢’s. The rule A — bc, whose application terminates the
recursion, ensures the presence of the substring bc in every string in the language. [u]

Example 3.2.3

Recall that a string w is a palindrome if w = w®. A grammar is constructed Lo generate
the set of palindromes over {a, b}. The rules of the grammar mimic the recursive definition
of palindromes given in Exercise 2.12. The basis of the set of palindromes consists of the
strings A, «, and b. The S rules

S—>alb|a

78 Chapter3 Context-Free Grammars

immediately generate these strings. The recursive part of the definition consists of adding
the same symbol to each side of an existing palindrome. The rules

S—>aSa|bSbh
capture the recursive generation process. o
Example 3.2.4
The first recursive rule of

S —> aSb|aSbb | A

generates a trailing b for every a, while the second generates two b’s for each a. Thus
there is at least one b for every a and at most two. The language of the grammar is

{a"b" |0 <n <m <2n}.]
Example 3.2.5
Consider the grammar

S —> abScB | A

B —>bB|b.

The recursive S rule generates an equal number of ab’s and ¢B’s. The B rules generate b+.
In a derivation each occurrence of B may produce a different number of b's. For example,
in the derivation
S = abScB

= ababScBcB

= ababcBcB

=> ababcbcB

= ababcbcbB

=> ababcbcebb,
the first occurrence of B generates a single b and the second occurrence produces bb. The
language of the grammar is the set {(ab)”(cb™)" | n >0, m, > 0}. The superscript m,
indicates that the number of »’s produced by each occurrence of B may be different since

b™i need not equal b™/ when i # j. o
Example 3.2.6
Let G| and G, be the grammars
G;: §— AB Gy: S—>aS|aA
A—aAla A— bA|A.

B—bB|A

3.2 Examples of Grammars and Languages 79

Both of these grammars generate the language a*b*. The A rules in G, provide the standard
method of generating a nonnull string of a’s. The use of the A-rule to terminate the derivation
allows the possibility of having no b’s. The rules in grammar G, build the strings of a*b*
in a left-to-right manner. u}

Example 3.2.7
The grammars G, and G, generate the strings over {a, b} that contain exactly two b’s. That
is, the language of the grammars is a*ba*ba™.
G;: S— AbAbA G,: S—>aS|bA
A—aA|X A—aA|bC
C—aC|A
G, requires only two variables since the three instances of g* are generated by the same A

rules. The second builds the strings in a left-to-right manner, requiring a distinct variable
for the generation of each sequence of a’s. ul

Example 3.2.8

The grammars from Example 3.2.7 can be modified to generate strings with at least two b's.

Gy: S —» AbAbA G;: S—>aS|bA
A= aA|bA|X A—aA|bC
C—>aC|bC|x

In Gy, any string can be generated before, between, and after the two b’s produced by the S
rule. A derivation in G, produces the first b using the rule S — bA and the second » with
A — bC. The derivation finishes using applications of the C rules, which can generate any
string of @’s and b’s. u]

Two grammars that generate the same language are said to be equivalent. Examples
3.2.6,3.2.7, and 3.2.8 show thal equivalent grammars may produce the strings of a language
by significantly different derivations. In later chapters we will see that rules having particular
forms may facilitate the mechanical determination of the syntactic correctness of strings.

Example 3.2.9

A grammar is given that generates the language consisting of even-length strings over {a, b}.
The strategy can be generalized to construct strings of length divisible by three, by four, and
so forth. The variables S and O serve as counters. An S occurs in a sentential form when an

80 Chapter3 Context-Free Grammars

even number of terminals has been generated. An O records the presence of an odd number
of terminals.

S—> a0 |bO |2

O —aS|bS
The application of S — A completes the derivation of a terminal string. Until this occurs, a
derivation alternates between applications of S and O rules.]

Example 3.2.10

Let L be the language over {a, b} consisting of all strings with an even number of b’s. The
grammar

S—>aS|bB|A
B —aB|bS|bC
C—aC|A

that generates L combines the techniques presented in the previous examples, Example 3.2.9
for the even number of b’s and Example 3.2.7 for the arbitrary number of a’s. Deleting all
rules containing C yields another grammar that generates L. o

Example 3.2.11

Exercise 2.38 requested a regular expression for the language over {a, b} consisting of
strings with an even number of a’s and an even number of 4's. It was noted at the time that
aregular expression for this language was quite complex. The flexibility provided by string.
generation with rules makes the construction of a context-free grammar for this language
straightforward. The variables are chosen to represent the parities of the number of a’s and
b’s in the derived string. The variables of the grammar with their interpretations are

Variable Interpretation

S Even number of a’s and cven number of b’s
A Even number of a’s and odd number of b's
B Odd number of a’s and even number of b's
C Odd number of a’s and odd number of b’s

The application of a rule adds one terminal symbol to the derived string and updates
the variable to reflect the new status. The rules of the grammar are

S—uB|bA|Ar
A—>aC|bhS
B—aS|bC
C —> aA |bB.

3.3 Regular Grammars 81

When the variable S is present, the derived string has an even number of a’s and an even
number of b’s. The application of § — A removes the variable from the sentential form,
producing a string that satisfies the language specification. u]

Example 3.2.12

The rules of a grammar are designed to impose a structure on the strings in the language.
This structure may consist of ensuring the presence or absence of certain combinations of
elements of the alphabet. We construct a grammar with alphabet {a, b, ¢} whose language
consists of all strings that do not contain the substring abc. The variables are used to
determine how far the derivation has progressed toward generating the string abc.

S—>bS|cS|aB|Ar

B—aB|cS|bC|A

C—>aB|bS|A
The strings are built in a left-to-right manner. At most one variable is present in a sentential
form. If an S is present, no progress has been made toward deriving abc. The variable B

occurs when the previous terminal is an a. The variable C is present only when preceded
by ab. Thus, the C rules cannot generate Lhe terminal ¢. u]

ﬁ Regular Grammars

Regular grammars are an important subclass of context-free grammars that play a prominent
role in the lexical analysis and parsing of programming languages. Regular grammars are
obtained by placing restrictions on the form of the right-hand side of the rules. In Chapter 6
we will show that regular grammars generate precisely the languages that are defined by
regular expressions or accepted by finite-state machines.

Definition 3.3.1
A regular grammar is a context-free grammar in which each rule has one of the following
forms:
i) A—a,
i) A—>aB,or
i) A— A,
where A, Be V,anda e L.

Derivations in regular grammars have a particularly nice form; there is at most one
variable present in a sentential form and that variable, if present, is the rightmost symbol
m the string. Each rule application adds a terminal to the derived string until a rule of the

82 Chapter3 Context-Free Grammars

form A — a or A — A terminates the derivation. These properties are illustrated using the
regular grammar G,

§S—>aS|aA
A—>DbA|X

from Example 3.2.6 that generates the language a*b*. The derivation of aabb,

S=>aS
= aaA
= aabA
= aabbA
= aabb,

shows the left-to-right generation of the prefix of terminal symbols. The derivation ends
with the application of the rule A — A.

A language generated by a regular grammar is called a regular language. You may recall
that the family of regular languages was introduced in Chapter 2 as the set of languages
described by regular expressions. There is no conflict with what might appear to be two
different definitions of the same term, since we will show that regular expressions and
regular grammars define the same family of languages.

A regular language may be generated by both regular and nonregular grammars. The
grammars G, and G, from Example 3.2.6 both generate the language a*b*. The grammar
G, is not regular because the rule S — A B does not have the specified form. A language is
regular if it is generated by some regular grammar; the existence of nonregular grammars
that also generate the language is irrclevant. The grammars constructed in Examples 3.2.9,
3.2.10, 3.2.11, and 3.2.12 provide additional examples of regular grammars.

Example 3.3.1

We will construct a regular grammar that gencrates the same language as the context-free
grammar

G: S—>abSA | A
A— Aa |

The language of G is A U (ab)Ta*. The equivalent regular grammar

S—>aB|x
B—bS|bA
A—>aA|A

3.4 Verifying Grammars 83

generates the strings in a left-to-right manner. The S and B rules generate a prefix from the
set (ab)*. If a string has a suffix of a's, the rulc B — bA is applied. The A rules are used
to generate the remainder of the string. o

Verifying Grammars

The grammars in the previous sections were built to generate specific languages. An intnitive
argument was given to show that the grammar did indeed generale the correct set of strings.
No matter how convincing the argument, the possibility of error exists. A proof is required
to guarantee that a grammar generates precisely the desired strings.

To prove that the language of a grammar G is identical to a given language L, the
inclusions L € L(G) and L(G) € L must be established. To demonstrate the techniques
involved, we will prove that the language of the grammar

G: S— AASB| AAB
A—a
B — bbb

is the set L = {a?'b™" | n > 0).

A terminal string is in the language of a grammar if it can be derived from the start
symbol using the rules of the grammar. The inclusion {a®"b*" | n > 0} C L(G) is established
by showing that every string in L is derivable in G. Since L contains an infinite number of
strings, we cannot construct a derivation for every string in L. Unfortunately, this is precisely
what is required. The apparent dilemma is solved by providing a derivation schema. The
schema consists of a pattcrn that can be followed to construct a derivation for any string in
L. A string of the form a?*b", for n > 0, can be derived by the following sequence of rule
applications:

Derivation Rule Applied
SZ4 (AA)YISB"! S AASB
= (AA)"B" S— AAB
2 (aa)"B" A—>a
== (aa)" (bbb)" B — bbb
- aanSn

where the superscripts on the = specify the number of applications of the rule. The
preceding schema provides a “recipe,” that, when followed, can produce a derivation for
any string in L.

The opposite inclusion, L(G) € {a®"b" | n > 0}, requires each terminal string deriv-
able in G to have the form specified by the set L. The derivation of a string in the language

84 Chapter3 Context-Free Grammars

consists of a finite number of rule applications, indicating the suitability of a proof by induc-
tion. The first difficulty is to determine exactly what we need to prove. We wish to establish
a relationship between the a’s and 4’s in all terminal strings derivable in G. A necessary
condition for a string w to be a member of L is that three times the number of a’s in the
string be equal to twice the number of b’s. Letting n. () be the number of occurrences of
the symbol x in the string u, this relationship can be expressed by 3n,(4) = 2n,(«).

This numeric relationship between the symbols in a terminal string clearly is not true
for every string derivable from S. Consider the derivation

S= AASB
= aASB.

The string a AS B, which is derivable in G, contains one a and no ’s.

To account for the intermediate sentential forms that occur in a derivation, relationships
between the variables and terminals that hold for all steps in the derivation must be deter-
mined. When a terminal string is derived, no variables will remain and the relationships
should yield the required structure of the string.

The interactions of the variables and the terminals in the rules of G must be examined
to determine their effect on the derivations of terminal strings. The rule A — a guarantees
that every A will eventually be replaced by a single a. The number of a's present at the
termination of a derivation consists of those already in the string and the number of A’s in
the string. The sum n,(u) + 74 (1) represents the number of a’s that must be generated
in deriving a terminal string from u. Similarly, every B will be replaced by the string
bbb. The number of b’s in a terminal string derivable from u is n, (1) 4+ 3ng(u). These
observations are used to construct condition (i), establishing the correspondence of variables
and terminals that holds for each step in the derivation.

i) 3(ny(u) + ns(m)) = 2(n,(u) + 3npg(u)).

The string aASB, which we have seen is derivable in G, satisfies this condition since
n,(@ASB) + ns(@aASB)=2and n,(aASB) + 3ng(aASB) =3.
Conditions (ii) and (iii) are

ii) ny(u) +n,(u) > 1, and
iii) the a’s and A’s in a sentential form precede the S, which precedes the b’s and B’s.

All strings in {a®*b*" | n > 0} contain at least two a’s and three b’s. Conditions (i) and
(ii) combine to yield this property. Condition (iii) prescribes the order of the symbols in
a derivable string. Not all of the symbols must be present in each string; strings derivable
from S by one rule application do not contain any terminal symbols.

After the appropriate relationships have been determined, we must prove that they hold
for every string derivable from S. The basis of the induction consists of all strings that can
be obtained by derivations of length one (the S rules). The inductive hypothesis asserts that
the conditions are satisfied for all strings derivable by n or fewer rule applications. The

3.4 Verifying Grammars 85

inductive step consists of showing that the application of an additional rule preserves the
relationships.

There are two derivations of length one, S = AASB and S = AAB. For each of these
strings, 3(n,(u) + n4(u)) = 2(ny(u) + 3ngz(u)) = 6. By observation, conditions (ii) and
(iii) hold for the two strings.

The inductive hypothesis asserts that (i), (i), and (iii) are satisfied by all strings
derivable by n or fewer rule applications. We now use the inductive hypothesis to show that
the three properties hold for all strings generated by derivations of # + 1 rule applications.

Let w be a string derivable from S by a derivation S 2w of length n + 1. To use
the inductive hypothesis, we write the derivation of length # + 1 as a derivation of length n
followed by a single rule application:

SSu=w.

Written in this form, it is clear that the string u is derivable by n rule applications. The
inductive hypothesis asserts that properties (i), (ii), and (iii) hold for 4. The inductive step
requires that we show that the application of one rule to # preserves these properties.

For any sentential form v, we let j(v) =3(n,(v) + n,(v)) and k(v) =2(n,(v) +
3ng(v)). By the inductive hypothesis, j(4) = k(u) and j(u)/3 > 1. The effects of the
application of an additional rule on the constituents of the string are given in the following
table.

Rule j) k(w) jw)/3

S— AASB jw)+6 k() +6 ju)/3+2
S—> AAB ja)+6 kw46 jw)/3+2
A—a Jj@) k(u) ju)/3
B —> bbb ju) k() j)/3

Since j(#) = k (), we conclude that j (w) = k(w). Similarly, j(w)/3 > 1 follows from the
inductive hypothesis that j(#)/3 > 1. The ordering of the symbols is preserved by noting
that each rule application either replaces S by an appropriately ordered sequence of variables
or transforms a variable to the corresponding terminal.

We have shown that the three conditions hold for every string derivable in G. Since there
arc no variables in a string w € L(G), condition (i) implies 3n,(w) = 2n,(w). Condition
(ii) guarantees the existence of a's and b’s, while (iii) prescribes the order. Thus L(G) €
{a*b> | n > 0}. Having established the opposite inclusions, we conclude that the language
of Gis {a®'b™ |n > 0).

As illustrated by the preceding argument, proving that a grammar generates a certain
language is a complicated process. This, of course, was an extremely simple grammar with
only a few rules. The inductive process is straightforward after the correct relationships
have been determined. The most challenging part of the inductive proof is determining the

86 Chapter3 Context-Free Grammars

relationships between the variables and the terminals that must hold in the intermediate
sentential forms. The relationships are sufficient if, when all references to the variables are
removed, they yield the desired structure of the terminal strings.

As seen in the preceding argument, establishing that a grammar G generates a language
L requires two distinct arguments:

i) that all strings of L are derivable in G, and

ii) that all strings generated by G are in L.
The former is accomplished by providing a derivation schema that can be used to produce
a derivation for any sting in L. The latter uses induction to show that each sentential form

satisfies conditions that lead to the generation of a string in L. The following examples
further illustrate the steps involved in these proofs.

Example 3.4.1

Let G be the grammar
S—>aS|bB|A
B— aB |bS|bC
C—aC|A

given in Example 3.2.10. We will prove that L(G) = a*(a*ba*ba™*)*, the set of all strings
over {a, b} with an even number of b’s. It is not true that every string derivable from S has
an even number of b’s. The derivation § => B produces a single b. To derive a terminal
string, every B must eventually be transformed into a b. Consequently, we conclude that the
desired relationship asserts that n,,(«) + n g(u) is even. When a terminal string w is derived,
np(w) =0 and ny(w) is even.

We will prove that n,,(#) + n g(u) is even for all strings derivable from S. The proof is
by induction on the length of the derivations.

Basis: Derivations of length one. There are three such derivations:

S=aS
S=bB
S=A.

By inspection, n,(u) 4+ ng(u) is even for these strings.

Inductive Hypothesis: Assume thatn,(u) + ng(u) is even for all strings « that can be derived
with n rule applications.

Inductive Step: To complete the proof, we need to show that n,(w) + n g (w) is even when-
ever w can be obtained by a derivation of the form § == w. The key step is to reformulate
the derivation to apply the inductive hypothesis. A derivation of w of length n + 1 can be
written S = u = w.

3.4 Verifying Grammars 87

By the inductive hypothesis, n,(u) + n g(u) is even. We show that the result of the
application of any rule to u preserves the parity of n,(#) + ng(x). The table

Rule ny(w) + ng(w)
S—als ny(u) + ng(u)
S—bB ny(u) +ngu) +2
S— A ny) +ny(u)
B —aB ny(u) + np(u)

B —> bS ny(u) +ngu)

B - bC ny(u) +ngu)

C —aC ny(u) + ng(u)
C— A ny(u) + ng(u)

gives the value of n,(w) + ng(w) when the corresponding rule is applied to . Each of the
rules leaves the total number of B’s and b’s fixed except the second, which adds two to the
total. Thus the sum of the ’s and B’s in a string obtained from u by the application of a rule
is even. Since a terminal string contains no B’s, we have shown that every string in L(G)

has an even number of b’s.

To complete the proof, the opposite inclusion, L(G) € a*(a*ba*ba*)*, must also be
established. To accomplish this, we show that every string in a*(a*ba*ba*)* is derivable in
G. A string in a*(a*ba*ba*)* has the form

a"ba™ba™ . . . a"%*ba"% ", k> 0.

Any string in @* can be derived using the rules S — 4§ and § — A. All other strings in L(G)
can be generated by a derivation of the form

Derivation

Rule Applied

s=b gns
= a"'bB
= g"pa™B
= aMba"2bS

=2y a"ba"2ba™ . .. a"* B
= a™ba"2ba™ . ..a"%bhC

k.
2 gMba"2bas . . .
=>a"bha™2ha™ ..

at*kpat%C
. @"¥ba" %+

S —»aS
S— bB
B —aB
B — bS

B —>aB
B — bC
C —»aC
C—A

88 Chapter3 Context-Free Grammars

Example 3.4.2

Let G be the grammar
S — aASB | A
A—>ad|d
B — bb.

We show that every string in L(G) has al least as many b’s as a’s. The number of &’s in
a terminal string depends upon the b’s and B’s in the intermediate steps of the derivation.
Each B generates two 5’s, while an A generates at most one «¢. We will prove, for every
sentential form u of G, that n,(u) + n4(r) <ny(u) + 2ng(u). Let j(u) =ng(u) +n4w)
and k(u) =ny,u) + 2ng(u).

Basis: There are two derivations of length one

Rule Jju) k(u)
S=>aASB 2 2
S=pA 0 0

and j(4) < k(u) for both of the derivable strings.

Inductive Hypothesis: Assume that j(¥) < k(u) for all strings « derivable from § in n or
fewer rule applications.

Inductive Step: We need to prove that j(w) < k(w) whenever S 2+L w. The derivation of

w can be rewritten S => ¥ => w and, by the inductive hypothesis, j(¥) < k(x). We must
show that the inequality is preserved by an additional rule application. The effect of each
rule application on j and £ is indicated in the following table.

Rule jw) k(w)
S —> aASB j)+2 k(u) +2
S— A Jj(u) k(u)
B - bb Jj) k(u)
A—ad Jjw) k(u)
A—>d Jw)—1 k()

The first rule adds 2 to each side of an inequality, maintaining the inequality. The final rule
subtracts 1 from the smaller side, reinforcing the inequality. For a string w € L(G), the
inequality yields n,(w) < n,(w) as desired. o

Example 3.4.3

In Example 3.2.2 the grammar
G: S—aSdd| A

A — bAc|bc

3.5 Leftmost Derivations and Ambiguity ~ 89

was constructed to generate the language L = {a"b™¢™d? |n > 0, m > 0). We develop
relationships among the variables and terminals that are sufficient to prove that L(G) € L.
The § and the A rules enforce the numeric relationships between the a’s and d’s and the b’s
and ¢’s. In a derivation of G, the start symbol is removed by an application of the rule S — A.
The presence of an A guarantees that a b will eventually be generated. These observations
lead to the following four conditions for every sentential form « of G:

1) 2n,(u) =ny(u).
ii) ny(u) =n.(u).
iii) ng(u) + n4(u) + ny(u) > 0.
iv) The a’s precede the b’s, which precede the § or A, which precede the ¢’s, which precede
the d’s.

The equalities guarantee that the terminals occur in correct numerical relationships.
The description of the language also demands that the terminals occur in a specified order.
The final condition ensures that the order is maintained at each step in the derivation. O

&B Leftmost Derivations and Ambiguity

The language of a grammar is the set of terminal strings that can be derived, in any
manner, from the start symbol. A terminal string may be generated by a number of different
derivations. For example, Figure 3.1 gave a grammar and four derivations of the string
ababaa using the rules of the grammar. Any one of the derivations is sufficient to exhibit
the syntactic correctness of the string.

The derivations using the natural language example that introduced this chapter were
all given as leftmost derivations. This is a natural technique for readers of English since the
leftmost variable is the first encountered when reading a string. To reduce the number of
derivations that must be considered in determining whether a string is in the language of a
grammar, we now prove that every string in the language is derivable in a leftmost manner.

Theorem 3.5.1

Let G=(V, I, P, §) be a context-free grammar. A string w is in L(G) if, and only if,
there is a leftmost derivation of w from S.

Proof. Clearly, w € L(G) whenever there is a leftmost derivation of w from §. We must
establish the “only if” clause of the equivalence, that is, that every string in the L(G) is
derivable in a leftmost manner. Let

S=uuwDduwm=>-- W, =w

be a, not necessarily leftmost, derivation of w in G. The independence of rule applications
in a context-free grammar is used to build a leftmost derivation of w. Let wy be the first
sentential form in the derivation to which the rule application is not leftmost. If there is no
such k, the derivation is already leftmost and there is nothing to show. We will show that

90 Chapter3 Context-Free Grammars

the rule applications can be reordered so that the first k + 1 rule applications are leftmost.
This procedure can be repeated, n — k times if necessary, to produce a leftmost derivation.

By the choice of wy, the derivation S =5 wy is leftmost. Assume that A is the leftmost
variable in w; and B is the variable transformed in the & + 1st step of the derivation. Then
wy, can be written u,AuyBus with #, € £*. The application of a rule B — v to w, has the
form

wy = u,AuzBug, = u,Auzvu3 = W41-

Since w is a terminal string, an A rule must eventually be applied to the leftmost variable
in wy. Let the first rule application that transforms the variable A occur at the j + Ist step
in the original derivation. Then the application of the rule A — p can be written

w;=u1Aq =>u1pg =wjy.

The rules applied in steps k + 2 to j transform the string #,vu; into ¢. The derivation is
completed by the subderivation

Wi = w,=w.

The original derivation has been divided into five distinct subderivations. The first & rule
applications are already leftmost, so they are left intact. To construct a leftmost derivation,
the rule A — p is applied to the leftmost variable at step k + 1. The context-free nature of
rule applications permits this rearrangement. A derivation of w that is leftmost for the first
k + 1rule applications is obtained as follows:

S é} Wy = u,AuzBu3

= u,puyBus (applying A — p)

= Uy pu,mviy (applying B — v)
= upg=wjy (using the derivation u;vus =)
=iy Wy (using the derivation w; = w,).

Every time this procedure is repeated, the derivation becomes “more” leftmost. If the length
of a derivation is n, then at most n iterations are needed to produce a leftmost derivation
of w. |

Theorem 3.5.1 does not guarantee that all sentential forms of the grammar can be
generated by a leftmost derivation. Only leftmost derivations of terminal strings are assured.
Consider the grammar

S— AB
A—aA|Xr

B—>bB|A

3.5 Leftmost Derivations and Ambiguity 91

that generates a*b*. The sentential form A can be obtained by the rightmost derivation
S = AB = A.Itis easy to see that there is no leftmost derivation of A.

A similar result (Exercise 31) establishes the sufficiency of using rightmost derivations
for the generation of terminal strings. Leftmost and rightmost derivations of w from v are
explicitly denoted v =:> w and v =;:> w.

Restricting our attention to leftmost derivations eliminates many of the possible deriva-
tions of a string. Is this reduction sufficient to establish a canonical derivation? That is, is
there a unique leftmost derivation of every string in the language of a grammar? Unfortu-
nately, the answer is no. Two distinct leftmost derivations of the string ababaa were given
in Figure 3.1.

The possibility of a string having several leftmost derivations introduces the notion of
ambiguity. Ambiguity in formal languages is similar to ambiguity encountered frequently
in natural languages. The sentence Jack was given a book by Hemingway has two distinct
structural decompositions. The prepositional phrase by Hemingway can modify either the
verb was given or the noun book. Each of these structural decompositions represents a
syntactically correct sentence.

The compilation of a computer program utilizes the derivation produced by the parser
lo generate machine-language code. The compilation of a program that has two derivations
uses only one of the possible interpretations to produce the executable code. An unfortunate
programmer may then be faced with debugging a program that is completely correct
according to the language definition but does not perform as expected. To avoid this
possibility—and help maintain the sanity of programmers everywhere—the definitions of
computer languages should be constructed so that no ambiguity can occur. The preceding
discussion of ambiguity leads to the following definition.

Definition 3.5.2

A context-free grammar G is ambiguous if there is a string w € L(G) that can be derived by
two distinct leftmost derivations. A grammar that is not ambiguous is called unambiguous.

Example 3.5.1
Let G be the grammar
S—aS|Sala
that generates a*. G is ambiguous since the string aa has two distinct leftmost derivations:

S$=as S= Sa
= aa = aa.

The language a™ is also generated by the unambiguous grammar

S—aS|a.

92 Chapter3 Context-Free Grammars

This grammar, being regular, has the property that all strings are generated in a left-to-right
manner. The variable § remains as the rightmost symbol of the string until the recursion is
halted by the application of the rule § — a. o

The previous example demonstrates that ambiguity is a property of grammars, not of
languages. When a grammar is shown to be ambiguous, it is often possible to construct
an equivalent unambiguous grammar. This is not always the case. There are some context-
free languages that cannot be generated by any unambiguous grammar. Such languages are
called inherently ambiguous. The syntax of most programming languages, which require
unambiguous derivations, is sufficiently restrictive to avoid inherent ambiguity.

Example 3.5.2
Let G be the grammar

S—>bS|Shla

with language b*ab*. The leftmost derivations

S=5bS S= Sb
= bSh = bSh
= bab = bab

exhibit the ambiguity of G. The ability to generate the b’s in either order must be eliminated
to obtain an unambiguous grammar. L(G) is also generated by the unambiguous grammars

Gy;: S—>bS|aA Gy S>bS|A
A—>bA|A A— Ab|a.

In G,, the sequence of rule applications in a leftmost derivation is completely determined
by the string being derived. The only leftmost derivation of the string b"ab™ has the form

SSY"S
= b"aA
= b"ab™A
= b"ab™.
A derivation in G, initially generates the leading b’s, followed by the trailing b's, and finally
the a. o

A grammar is unambiguous if, at each step in a leftmost derivation, there is only one
rule whose application can lead to a derivation of the desired string. This does not mean
that there is only one applicable rule, but rather that the application of any other rule makes
it impossible to complete a derivation of the string.

3.6 Context-Free Grammars and Programming Language Definition 93

Consider the possibilities encountered in constructing a leftmost derivation of the
string bbabb using the grammar G, from Example 3.5.2. There are two § rules that can
initiate a derivation. Derivations initiated with the rule S — A generate strings beginning
with a. Consequently, a derivation of bbabb must begin with the application of the rule
S — bS. The second b is generated by another application of the same rule. At this point,
the derivation continues using S — A. Another application of S — bS would generate the
prefix bbb. The suffix bb is generated by two applications of A — Ab. The derivation is
successfully completed with an application of A — a. Since the terminal string specifies
the exact sequence of rule applications, the grammar is unambiguous.

Example 3.5.3

The grammar from Example 3.2.4 that generates the language L= {a"b™ |0 <n <m < 2n}
is ambiguous. The string aabbb can be generated by the derivations

S=aSb S =>aShb
= aaShbb = aaSbbb
= aabbb => aabbb.

A strategy for unambiguously generating the strings of L is to initially produce a’s with
a single matching b. This is followed by generating a’s with two b’s. An unambiguous
grammar that produces the strings of L in this manner is

S—aSh|A|Ar
A — aAbb | abb.]

A derivation tree depicts the transformation of the variables in a derivation. There is a
natural one-to-one correspondence between leftmost (rightmost) derivations and derivation
trees. Definition 3.1.4 outlines the construction of a derivation tree directly from a leftmost
derivation. Conversely, a unique leftmost derivation of a string w can be extracted from a
derivation tree with frontier w. Because of this correspondence, ambiguity is often defined
in terms of derivation trees. A grammar G is ambiguous if there is a string in L(G) that is the
frontier of two distinct derivation trees. Figure 3.3 shows that the two leftmost derivations
of the string ababaa given in Figure 3.1 generate distinct derivation trees.

ﬁ Context-Free Grammars and Programming Language
Definition

In the preceding sections we used context-free grammars to generate “toy” languages us-
ing an alphabet with only a few elements and a small number of rules. These examples
demonstrated the ability of context-free rules to produce strings that satisfy particular syn-
tactic requirements. A programming language has a larger alphabet and more complicated
syntax, increasing the number and complexity of the rules needed to define the language.

94 Chapter3 Context-Free Grammars

The first formal specification of a high-level programming language was given for the lan-
guage ALGOL 60 by John Backus [1959] and Peter Naur [1963]. The system employed
by Backus and Naur is now referred to as Backus-Naur form, or BNF. The programming
language Java, whose specification was given in BNF, will be used to illustrate principles
of the syntactic definition of a programming language. A complete formal definition of Java
is given in Appendix IV,

A BNF description of a language is a context-free grammar; the only difference is the
notation used to define the rules. We will give the rules using the context-free notation, with
one exception. The subscript opt after a variable or a terminal indicates that it is optional.
This notation reduces the number of rules that need to be written, but rules with optional
components can easily be transformed into equivalent context-free rules. For example,
A — By, and A — B,,,C can be replaced by the rules A — B |4 and A — BC | C,
respectively.

The notational conventions used in the Java rules are the same as the natural language
example at the beginning of the chapter. The names of the variables indicate the components
of the language that they generate and are enclosed in {). Java keywords are given in bold,
and other terminal symbols are represented by character strings delimited by blanks.

The design of a programming language, like the design of a complex program, is
greatly simplified utilizing modularity to develop subsets of the grammar independently.
The techniques you have used in building small rule sets provide the skills necded to design
a grammar for larger languages with more complicated syntaxes. These techniques include
using rules to ensure the presence or relative position of elements and using recursion to
generate sequences and to nest parentheses.

To illustrate the principles of language design, we will examine rules that define literals,
identifiers, and arithmetic expressions in Java. Literals, strings that have a fixed type and
value, are frequently used to initialize variables, to set the bounds on repetitive statements,
and to store standard messages to be output. The rule for the variable (Literal) defines the
types of Java literals, The Java literals, along with the variables that generate them, are

opt

Literal Variable Examples
Boolean < BooleanLiteral > true, false
Character < CharacterLiteral > *a’, ’\n’ (linefeed escape sequence), "z’
String < StringLireral > "" (empty string),
"This is a noncmpty string”
Integer < IntegerLiteral > 0, 356, 1234L (long), 077 (octal),

0Ox 1ab2 (hex)
Floating point < Floating PointLiteral > 2.,.2,2.0,12.34, 2e3, 6.2¢-5
Null < NullLiteral > null

Each floating point literal can have an f, F, d, or D as a suffix to indicate its precision. The
definitions for the complete set of Java literals are given in rules 143-167 in Appendix I'V.

3.6 Context-Free Grammars and Programming Language Definition 95

We will consider the rules that define the floating point literals, since they have the most
interesting syntactic variations. The four (FloatingPointLiteral) rules specify the general
form of floating point literals.

(FloatingPointLiteral) — (Digits) . (Digits) ,p (ExponentPart) .., (FloatTypeSuffix) , |
. (Digits) (ExponentPart) ,,,(FloatTypeSuffix) ., |
(Digits) (ExponentPart) (FloatTypeSuffix) ,p, |
(Digits) (ExponentPart),,,(FloatTypeSuffix)
The variables (Digits), (ExponentPart), and (FloatTypeSuffix) generate the compo-

nents that make up the literal. The variable (Digits) generates a string of digits using
recursion. The nonrecursive rule ensures the presence of at least one digit.

(Digits) — (Digit) | (Digits)(Digit)

{Digit) — 0 | (NonZeroDigit)

(NonZeroDigit) - 1|2|3[4|5|6]718|9

(ExponentPart) — (ExponentIndicator)(Signedinteger)

(Exponentindicator) — e | E

(SignedlInteger) — (Sign),,,(Digits)

(Sign) = + | —

(FloatTypeSuffix) — f |F |d |D
The subscript opt in the rule (Signedinteger) — (Sign),,,(Digits) indicates that a signed
integer may begin with -+ or —, but the sign is not necessary.

The first (FloatingPointLiteral) rule generates literals of the form 1., 1.1, 1.1e, Le,
Llef, 1.f, 1.1f, and l.ef. The leading string of digits and decimal point are required; all
other components are optional. The second rule generates literals that begin with a decimal
point, and the last two rules define the floating point literals without decimal points.

Identifiers are used as names of variables, types, methods, and so forth. Identifiers are
defined by the rules

(Identifier) — (ldentifierChars)
(IdentifierChars) — (JavaLetter) | (JavaLetter){JavaLetterOrDigit)

where the Java letters include the letters A to Z and a to z, the underscore _, and the dollar
sign $, along with other characters represented in the Unicode encoding.
The definition of statements in Java begins with the variable (Statement):

(Statement) — (StatementWithoutTrailing Substatement) | {LabeledStatement) |
(IfThenStatement) | {IfThenElseStatement) |
(WhileStatement) | (ForStatement).

96 Chapter3 Context-Free Grammars

Statements without trailing substatements include blocks and the do and switch statements.
The entire set of statements is given in rules 73-75 in Appendix IV. Like the rules for the
literals, the statement rules define the high-level structure of a statement. For example,
if-then and do statements are defined by

(IfThenStatement) — if ({Expression))(Statement)
(DoStatement) — do (Statement) while ((Expression)).

The occurrence of the variable (Statement) on the right-hand side of the preceding rules
generates the statements to be executed after the condition in the if-then statement and in
the loop in the do loop.

The evaluation of expressions is the key to numeric computation and checking the
conditions in if-then, do, while, and switch statements. The syntax of expressions is defined
by the rules 118-142 in Appendix IV. The syntax is complicated becanse Java has numeric
and Boolean expressions that may utilize postfix, prefix, or infix operators. Rather than
describing individual rules, we will look at several subderivations that occur in the derivation
of a simple arithmetic assignment.

The first steps transform the variable {(Expression) to an assignment:

(Expression) =

—

AssignmentExpression)

—

=> (Assignment)

= (LeftHandSide) (AssignmentOperator)(AssignmentExpression)

= (ExpressionName) (AssignmentOperator) (AssignmentExpression)
=

Identifier) (AssignmentOperator) (AssignmentExpression)

— e~~~

= (Identifier) = (AssignmentExpression).

The next step is to derive (AdditiveExpression) from (AssignmentExpression).

(AssignmentExpression) Conditional Expression)
ConditionalOrExpression)
ConditionalAndExpression)
InclusiveOrExpression)
ExclusionOrExpression)
AndExpression)
EqualityExpression)
RelationalExpression)
ShiftExpression)

=
=
=
=
=
=
=
=
=
=> (AdditiveExpression).

(
(
(
(
(
(
(
(
(
(

Exercises 97

Derivations beginning with (AdditiveExpression) produce correctly formed expressions
with additive operators, multiplicative operators, and parentheses. For example,

(AdditiveExpression) = (AdditiveExpression) 4+ (MultiplicativeExpression)
= (MultiplicativeExpression) + (MultiplicativeExpression)
= (UnaryExpression) + (MultiplicativeExpression)

= (Mdentifier) + (MultiplicativeExpression)
= {Identifier) +
(MultiplicativeExpression) * (MultiplicativeExpression)
begins such a derivation. Derivations from {UnaryExpression) can produce literals, vari-
ables, or ((Expression)) to obtain nested parentheses.

The rules that define identifiers, literals, and expressions show how the design of a large
language is decomposed into creating rules for frequently recurring subsets of the language.
The resulting variables {Identifier), (Literal), and (Expression) become the building blocks
for higher-level rules.

The start symbol of the grammar is (CompilationUnit) and the derivation of a Java
program begins with the rule

(CompulationUnit) — (PackageDeclaration),,, (ImportDeclarations),,,

(TypeDeclarations), pi-

A string of terminal symbols derivable from this rule is a syntactically correct Java program.

Exercises

1. Let G be the grammar
S—abSc| A
A—> cAd|cd.
a) Give a derivation of ababccddcc.
b) Build the derivation tree for the derivation in part (a).
c) Use set notation to define L(G).
2. Let G be the grammar
S— ASB| X
A— aAb |
B — bBa | ba.
a) Give a leftmost derivation of aabbba.
b) Give a rightmost derivation of abaabbbabbaa.

98 Chapter3 Context-Free Grammars

c) Build the derivation tree for the derivations in parts (a) and (b).
d) Use set notation to define L(G).
3. Let G be the grammar
S— SAB| A
A—aAla
B — bB|A.

a) Give a leftmost derivation of abbaab.
b) Give two leftmost derivations of aa.
¢) Build the derivation tree for the derivations in part (b).
d) Give a regular expression for L(G).
4. Let DT be the derivation tree

S
/\

A B
/\ /\
a A A B
| I
a a b

a) Give a leftmost derivation that generates the tree DT.
b) Give a rightmost derivation that generates the tree DT.
c) How many different derivations are there that generate DT?

5. Give the leftmost and rightmost derivations corresponding to each of the derivation
trees given in Figure 3.3.

6. For cach of the following context-free grammars, use set notation to define the language
generated by the grammar.

a) S—>aaSB | A d) S—>aSh|A
B—>bB|b A— cAd|cBd
B — aBb|ab
b) S aSbb| A e) S—>aSB|aB
A—cAlc B—bb|b
c) S—>abSdc| A
A— cdAba | i

7. Construct a grammar over {a, b, c¢) whose language is {a"b*"c™ | n, m > 0}.
8. Construct a grammar over {a, b, c} whose language is (a"b™c?**™ | n, m > 0).
9. Construct a grammar over {a, b, c} whose language is {a"b"c' |0 <n 4+ m <i}.

Exercises 99

10. Construct a grammar over {a, b} whose language is {a™b" |0 <n <m < 3n}.
11. Construct a grammar over {a, b} whose language is {a"b‘a" | i =m + n}.

12. Construct a grammar over {a, b} whose language contains precisely the strings with
the same number of a’s and b’s.

*13. Construct a grammar over {a, b} whose language contains precisely the strings of odd
length that have the same symbol in the first and middle positions.

14. For each of the following regular grammars, give a regular expression for the language

generated by the grammar.
a) §—>aA c) S—>aS|bA
A—>aAlbA|b A— bB
B—>aB|)
b) § »>aA d) S>aS|bA|A
A—aA|hB A—>aA|bS
B—-bB|A

For Exercises 15 through 25, give a regular grammar that generates the described language.

15. The set of strings over {a, b, ¢} in which all the a’s precede the b’s, which in turn
precede the ¢'s. It is possible that there are no a’s, b’s, or c’s.

16. The set of strings over {a, b} that contain the substring aa and the substring bb.

17. The set of strings over {a, b} in which the substring aa occurs at least twice. (Hint:
Beware of the substring aaa.)

18. The set of strings over {a, b} that contain the substring ab and the substring ba.
19. The set of strings over {a, b} in which the number of a’s is divisible by three.

20. The set of strings over {a, b} in which every a is either immediately preceded or
immediately followed by b, for example, baab, aba, and b.

21. The set of strings over {a, b} that do not contain the substring aba.
22. The set of strings over {a, b} in which the substring aa occurs exactly once.
23. The set of strings of odd length over {a, b} that contain exactly two b’s.

* 24. The set of strings over {a, b, c} with an odd number of occurrences of the substring
ab.

25. The set of strings over {a, b} with an even number of a’s or an odd number of b’s.

26. The grammar in Figure 3.1 generates (b*ab*ab*)™, the set of all strings with a positive,
even number of a’s. Prove this.

27. Prove that the grammar given in Example 3.2.2 generates the prescribed language.
28. Let G be the grammar

S—aSb|B
B — bB | b.

Prove that L(G) = {a"b™ | 0 <n < m}.

100 Chapter3 Context-Free Grammars

29. Let G be the grammar

* 30.

31.

32.

33.

S—aSaa | B
B — bbBdd | C
C — bd.

a) What is L(G)?
b) Prove that L(G) is the set given in part (a).
Let G be the grammar

S—aSbS|aS|A.

Prove that every prefix of a string in L(G) has at least as many a’s as b's.

Let G be a context-free grammar and w € L(G). Prove that there is a rightmost deriva-
tion of w in G.

Let G be the grammar
S—aS|Sb|ab.

a) Give a regular expression for L(G).
b) Construct two leftmost derivations of the string aabb.
c¢) Build the derivation trees for the derivations from part (b).
d) Construct an unambiguous grammar equivalent to G.
For each of the following grammars, give a regular expression or set-theoretic definition
for the language of the grammar. Show that the grammar is ambiguous and construct
an equivalent unambiguous grammar.
a) S — aaS|aaaaaS|A
b) S—>aSA|A
A—>DbA|A
c) S—aSh|aAb
A—cAd|B
B—aBb|A
d) S— AaSbB | A
A—>aAla
B—>bB|)
*e) S>> A|B
A—abA|r
B —>aBb|A

34.

3s.

36.

37.

38.

* 39.

Exercises 101

Let G be the grammar

S—>aA|i
A—>aA|bB
B — bB | b.

a) Give a regular expression for L(G).
b) Prove that G is unambiguous.
Let G be the grammar

S—>aS|aAla
A —>aAb|ab.

a) Give a set-theoretic definition of L(G).
b) Prove that G is unambiguous.
Let G be the grammar

S—>aS|bA|A

A—>bA|aS|A.
Give a regular expression for L(G). Is G ambiguous? If so, give an unambiguous
grammar that generates L(G). If not, prove it.

Construct unambiguous grammars for the languages L, = {a"b"c¢™ | n, m > 0} and
L, = {a"b™c¢™ | n, m > 0}. Construct a grammar G that generates L, U L,. Prove that
G is ambiguous. This is an example of an inherently ambiguous language. Explain,
intuitively, why every grammar generating L, U L, must be ambiguous.

Use the definition of Java in Appendix IV to construct a derivation of the string 1.3e2
from the variable (Literal).

Let G; and G, be the following grammars:

G;: S—aABb Gy: S —> AABB
A—>aAla A— AAla
B—bB|b B — BB |b.

a) For each variable X, show that the right-hand side of every X rule of G, is derivable
from the corresponding variable X using the rules of G,. Use this to conclude that
L(Gp EL(Gy).

b) Prove that L(G,) = L(Gy).

102 Chapter3 Context-Free Grammars

*40. A right-linear grammar is a context-free grammar, each of whose rules has one of the
following forms:

i) A->w,or
i) A—> wB,
where w € *. Prove that a language L is generated by a right-linear grammar if, and
only if, L is generated by a regular grammar.
41, Try to construct a regular grammar that generates the language {a”b" | n > 0}. Explain
why none of your attempts succeed.
42, Try to construct a context-free grammar that generates the language {a"b"c” | n > 0}.
Explain why none of your attempts succeed.

Bibliographic Notes

Context-free grammars were introduced by Chomsky [1956], [1959]. Backus-Naur form
was developed by Backus [1959]. This formalism was used to define the programming
language ALGOL; see Naur [1963]. The BNF definition of Java is given in Appendix IV.
The equivalence of context-free languages and the languages generated by BNF definitions
was noted by Ginsburg and Rice [1962].

Properties of ambiguity are examined in Floyd [1962], Cantor [1962], and Chomsky
and Schutzenberger [1963]. Inherent ambiguity was first noted in Parikh [1966]. A proof
that the language in Exercise 37 is inherently ambiguous can be found in Harrison [1978].
Closure properties for ambiguous and inherently ambiguous languages were established by
Ginsburg and Ullian [1966a, 1966b].

Normal Forms for
Context-Free Grammars

The definition of a context-free grammar permits unlimited flexibility in the form of the
right-hand side of a rule. This flexibility is advantageous for designing grammars, but
the lack of structure makes it difficult to establish general relationships about grammars,
derivations, and languages. Normal forms for context-free grammars impose restrictions on
the form of the rules to facilitate the analysis of context-free grammars and languages. Two
properties characterize a normal form:

i) The grammars that satisfy the normal form requirements should generate the entire set
of context-free languages.

ii) There should be an algorithmic transformation of an arbitrary context-free grammar
into an equivalent grammar in the normal form.

In this chapter we introduce two important normal forms for context-free grammars, the
Chomsky and Greibach normal forms. Transformations are developed to convert an arbitrary
context-free grammar into an equivalent grammar that satisfies the conditions of the normal
form. The transformations consist of a series of rule modifications, additions, and dcletions,
each of which preserves the language of the original grammar.

The restrictions imposed on the rules by a normal form ensure that derivations of the
grammar have certain desirable properties. The derivation trees for derivations in a Chomsky
normal form grammar are binary trees. In Chapter 7 we will use the relationship between
the depth and number of leaves of a binary tree to guarantee the existence of repetitive
patterns in strings in a context-free language. We will also use the properties of derivations

103

104 Chapter4 Normal Forms for Context-Free Grammars

in Chomsky normal form grammars to develop an efficient algorithm for deciding if a string
is in the language of a grammar.

A derivation using the rules of a Greibach normal form grammar builds a string in
a left-to-right manner. Each rule application adds one terminal symbol to the derived
string. The Greibach normal form will be used in Chapter 7 to establish a machine-based
characterization of the languages that can be generated by context-free grammars.

Grammar Transformations

The transformation of a grammar into a normal form consists of a sequence of rule additions,
deletions, or modifications, each of which preserves the language of the original grammar.
The objective of each step is to produce rules that satisfy some desirable property. The
sequence of transformations is designed to ensure that each successive step maintains the
properties produced by the previous transformations.

Our first transformation is quite simple; the goal is to limit the role of the start symbol
to the initiation of a derivation. If the start symbol is a recursive variable, a derivation of the
form S > uSv permits the start symbol to occur in sentential forms in intermediate steps
of a derivation. For any grammar G, we build an equivalent grammar G’ in which the start
symbol is nonrecursive. The observation that is important for this transformation is that
the start symbol of G’ need not be the same variable as the start symbol of G. Although
this transformation is straightforward, it demonstrates the steps that are required to prove a
transformation preserves the language of the original grammar.

Lemma 4.1.1
LetG= (V, Z, P, S)be a context-frec grammar. There is a grammar G’ that satisfies

i) L(G) = L(G").
ii) The start symbol of G’ is not a recursive variable.

Proof. If the start symbol S does not occur on the right-hand side of a rule of G, then
there is nothing to change and G’ = G. If § is a recursive variable, the recursion of the start
symbol must be removed. The alteration is accomplished by “taking a step backward” with
the start of a derivation. The grammar G’ = (VU {§'}, Z, PU{S'— S}, §')is constructed
by designating a new start symbol S” and adding S’ — S to the rules of G. The two grammars
generate the same language since any string # derivable in G by a derivation § 5:» u can be

obtained by the derivation S’ => S => u. Moreover, the only role of the rule added to P is

to initiate a derivation in G/, lhe remamder of which is identical to a derivation in G. Thus
a string derivable in G’ is also derivable in G.]

4.1 Grammar Transformations 105

Example 4.1.1

The start symbol of the grammar G

G: S—aS|AB| AC G.S—>3S

A—>aA|Ar S—>aS|AB| AC

B — bB | bS A—>aA|Ar

C—c¢ClAr B — bB |bS
C—-cClA

is recursive. The technique outlined in Lemma 4.1.1 is used to construct the equivalent
grammar G’. The start symbol of G’ is S’, which is nonrecursive. The variable S is still
recursive in G/, but it is not the start symbol of the new grammar. o

The process of transforming grammars into normal forms consists of removing and
adding rules to the grammar. With each alteration, the language generated by the grammar
should remain unchanged. Lemma 4.1.2 establishes a simple criterion by which rules may
be added to a grammar without altering the language. Lemma 4.1.3 provides a method for
removing a rule. Of course, the removal of a rule must be accompanied by the addition of
other rules so the language does not change.

Lemma 4.1.2

Let G=(V, I, P, §) be a context-free grammar. If A %} w, then the grammar G’ =
(V, Z, PU{A — w}, S) is equivalent to G.

Proof. Clearly, L(G) € L(G’) since every rule in G is also in G'. The other inclusion
follows from the observation that the effect of the application of the rule A — w in a
derivation in G’ can be accomplished in G by employing the derivation A =;> w to transform
Atow.]

Lemma 4.1.3

LetG=(V, %, P, S) be a context-free grammar, A — uBv be arule in P, and B — w, |
w, | ... | w, be the B rules of P. The grammar G' = (V, X, P/, S) where

P=P—{A—>uBv)U{A > uwp|uwywl...|uw,v}

is equivalent to G.

Proof. Since each rule A — uw;v is derivable in G, the inclusion L(G") € L(G) follows
from Lemma 4.1.2.

106 Chapter4 Normal Forms for Context-Free Grammars

The opposite inclusion is established by showing that every terminal string derivable
in G using the rule A — uBv is also derivable in G’. The rightmost derivation of a terminal
string that utilizes this rule has the form

S = pAq = puBvq = pxBvg = pxw;vg = w,

where u = x transforms u into a terminal string. The same string can be generated in G’
using the rule A — uw;v:

S=> pAq = puw;vq = pxw;vg = w. -

Elimination of A-Rules

In the derivation of a terminal string, the intermediate sentential forms may contain variables
that do not generate terminal symbols. These variables are removed from the sentential form
by applications of A-rules. This property is illustrated by the derivation of the string aaaa
in the grammar

S — SaB|aB
B—bB|A.

The language generated by this grammar is (ab*)*. The leftmost derivation of aaaa
generates four B’s, each of which is removed by the application of the rule B — A:

S = SaB
= SaBaB
= SaBaBaB
= aBaBaBaB
= aaBaBaB
= aaaBaB

= aaaaB
= aaaa.

The objective of our next transformation is to ensure that every variable in a sentential
form contributes to the terminal string that is derived. In the preceding example, none of the
occurrences of the B’s produced terminals. A more efficient approach would be to avoid
the generation of variables that are subsequently removed by A-rules.

The language (ab*)* is also generated by the grammar

S— SaB|Sa|aB|a
B—bB|b

42 Elimination of A-Rules 107

that does not have A-rules. The derivation of the string aaaa,

S= Sa
= Saa

= Saaa
= aaaa,

uses half the number of rule applications as before. This efficiency is gained at the expense
of increasing the number of rules of the grammar.

The effect of a A-rule B — A in a derivation is not limited to the variable B. Consider
the grammar

S — aAb
A—>aA|B
B—>bB|A

that generates the language a*b*. The variable A occurs in the derivation of the string ab,

S=aAb
= aBb
= ab,

but the subderivation beginning with the application of the rule A — B does not produce
terminal symbols. Whenever a variable can derive the null string, as A does in the preceding
example, it is possible that its occurrence in a sentential form may not contribute to the string.
We will call a variable that can derive the null string nullable. If a sentential form contains
a nullable variable, the length of the derived string can be reduced by a sequence of rule
applications.

We will now present a technique to remove A-rules from a grammar. The modification
of the grammar consists of three steps:

1. The determination of the set of nullable variables,
2. The addition of rules in which occurrences of the nullable variables are omitted, and
3. The deletion of the A-rules.

If a grammar has no nullable variables, each variable that occurs in a derivation contributes
to the generation of terminal symbols. Consequently, the application of a rule cannot reduce
the length of the sentential form. A grammar with this property is called noncontracting.
The first step in the removal of A-rules is the determination of the set of nullable
variables. Algorithm 4.2.1 iteratively constructs this set from the A-rules of the grammar. The
algorithm utilizes two sets: the set NULL collects the nullable variables and PREV, which
contains the nullable variables from the previous iteration, triggers the halting condition.

108 Chapter4 Normal Forms for Context-Free Grammars

Algorithm 4.2.1
Construction of the Set of Nullable Variables

input: context-free grammar G = (V, X, P, §)

I.NULL:={A|A—> AcP}
2. repeat
2.1. PREV :=NULL
2.2, for each variable A € V do
if there is an A rule A — w and w € PREV*, then
NULL :=NULL U {A}
until NULL = PREV

The set NULL is initialized with the variables that derive the null string in one rule
application. A variable A is added to NULL if there is an A rule whose right-hand side
consists entirely of variables that have previously been determined to be nullable. The
algorithm halts when an iteration fails to find a new nullable variable. The repeat-until loop
must terminate since the number of variables is finite. The definition of nullable, based on
the notion of derivability, is recursive. Thus, induction may be used to show that the set
NULL contains exactly the nullable variables of G at the termination of the computation.

Lemma 4.2.2

Let G=(V, X, P, §) be a context-free grammar. Algorithm 4.2.1 generates the set of
nullable variables of G.

Proof. Induction on the number of iterations of the algorithm is used to show that every
variable in NULL derives the null string. If A is added to NULL in step 1, then G contains
the rule A — A, and the derivation is obvious.

Assume that all the variables in NULL after # iterations are nullable. We must prove
that any variable added in iteration n + 1is nullable. If A is such a variable, then there is a
rule

A—> A1A2 - Ak

with cach A; in PREV at the n + Ist iteration. By the inductive hypothesis, A; = A for

i=12,..., k. These derivations can be used to construct the derivation
A= AA, .. A
Ay A
= Az... A
= Ay
= A,

exhibiting the nullability of A.

4.2 Elimination of A-Rules 109

Now we show that every nullable variable is eventually added to NULL. If n is the
length of the minimal derivation of the null string from the variable A, then A is added to
the set NULL on or before iteration n of the algorithm. The proof is by induction on the
length of the derivation of the null string from the variable A.

If A 2), then A is added to NULL in step 1. Suppose that all variables whose minimal
derivations of the null string have length n or less are added to NULL on or before iteration n,
Let A be a variable that derives the null string by a derivation of length # 4 1. The derivation
can be written

A= AA, .. A
= .
Each of the variables A; is nullable with minimal derivations of length » or less. By the

inductive hypothesis, each A; is in NULL prior to iteration n + 1. Let m < n be the iteration
in which all of the A;’s first appear in NULL. On iteration m + 1 the rule

A—-)AlAz...Ak

causes A to be added to NULL.]

The language generated by a grammar contains the null string only if it can be derived
from the start symbol of the grammar, that is, if the start symbol is nullable. Thus Algorithm
4.2.1 provides a decision procedure for determining whether the null string is in the language
of a grammar.

Example 4.2.1
The set of nullable variables of the grammar
G: §— ACA
A—aAa|B|C
B—bB|b
C—ocClA

is constructed using Algorithm 4.2.1. The action of the algorithm is traced by giving the
contents of the sets NULL and PREYV after each iteration of the repeat-until loop. Itcration
zero specifies the composition of NULL prior to entering the loop.

Iteration NULL PREV

0 {C}

1 {4, C} {C}

2 {S.4,C} {A, C}

3 {S, A, C} (S, A, C}

110 Chapter4 Normal Forms for Context-Free Grammars

The algorithm halts after three iterations. The nullable variables of G are S, A, and C. Since
the start symbol is nullable, the null string is in L(G). a

A grammar with A-rules is not noncontracting. To build an equivalent noncontracting
grammar, rules must be added to generate the strings whose derivations in the original
grammar require the application of A-rules. There are two distinct roles that a nullable
variable B can play in a derivation that is initiated by the application of the rule A — uBv;
it can derive a nonnull terminal string or it can derive the null string. In the latter case, the
derivation has the form

A=uBv
= uv
S w.

The string w can be derived without A-rules by augmenting the grammar with the rule
A — uv. Lemma 4.1.2 ensures that the addition of this rule does not affect the language of
the grammar.

The rule A — BABa requires three additional rules to construct derivations without
A-rules. If both of the B’s derive the null string, the rule A — Aa can be used in a
noncontracting derivation. To account for all possible derivations of the null string from
the two instances of the variable B, a noncontracting grammar requires the four rules

A— BABa
A — ABa
A — BAa
A — Aa

to produce all the strings derivable from the rule A — BA Ba. Since the right-hand side of
each of these rules is derivable from A, their addition to the rules of the grammar does not
alter the language.

The previous technique constructs rules that can be added to a grammar G to derive
strings in L(G) without the usec of A-rules. This process is used to construct a grammar
without A-rules that is equivalent to G. If L(G) contains the null string, there is no equivalent
noncontracting grammar. All variables occurring in the derivation $ => A must eventually
disappear. To handle this special case, the rule S — A is allowed in the new grammar, but
all other A-rules are replaced. The derivations in the resulting grammar, with the exception
of § = A, are noncontracting. A grammar satisfying these conditions is called essentially
noncontracting.

‘When constructing equivalent grammars, a subscript is used to indicate the restriction
being imposed on the rules. The grammar obtained from G by removing A-rules is denoted
Gi.

42 CElimination of A-Rules 111

Theorem 4.2.3

Let G=(V, Z, P, S) be a context-free grammar. There is an algorithm to construct a
context-frec grammar Gy = (V, I, Py, Sp) that satisfies

i) L(GL) =L(G).
ii) S, is not a recursive variable.
iii) G, has no A-rules other than § — A if A € L(G).

Proof. The start symbol can be made nonrecursive by the technique presented in Lemma
4.1.1. The set of variables Vp_ is simply V with a new start symbol added, if necessary. The
set Py of rules of Gy is obtained by a two step process.

1. For each rule A — w in P, if w can be written
W A WA, .. WAL Wiy,

where Ay, A,, ..., A; are asubset of the occurrences of the nullable variables in w,
then add the rule

A—> Wwy ... WpWiy

to PL'
2. Delete all A-rules other than § — A from P; .

Step 1 generates rules of Py from each rule of the original grammar. A rule with n oc-
currences of nullable variables in the right-hand side produces 2" rules. Step 2 deletes all
A-rules other than §; — A from Py. The rules in Py are either rules of G or derivable using
rules of G. Thus, L(G) € L(G).

The opposite inclusion, that every string in L(G) is also in L(Gp), must also be
established. We prove this by showing that every nonnull terminal string derivable from
a variable of G is also derivable from that variable in Gy . Let A = w be a derivation in G
with w € =, We prove that A = w by induction on n, the lengtlf of the derivation of w in

G.lfn=1then A— wisaruleinP and, since w #1, A > wisinPy.
Assume that terminal strings derivable from any variable of G by n or fewer rule appli-

cations can be derived from the variable in G; . Note that this makes no claim concerning

the length of the derivation in Gy . Let A == w be a derivation of a terminal string. If we

G
explicitly specify the first rule application, the derivation can be written
A= wAwA, . W Apwe %} w,
where A; € V and w; € £*. By Lemma 3.1.5, w can be written

W=upiwrpy - . Wy PrWeyns

112 Chapter4 Normal Forms for Context-Free Grammars

where A; derives p; in G with a derivation of length n or less. Foreach p; € £, the inductive
hypothesis ensures the existence of a derivation A; => p;- If p; = A, the variable 4; is
nullable in G. Step 1 generates a rule from

A—> wlAleAz e kakwk+]
in which each of the A;’s that derives the null string is deleted. A derivation of w in G,

can be constructed by first applying this rule and then deriving each p; € =% using the
derivations provided by the inductive hypothesis. |

Example 4.2.2

Let G be the grammar given in Example 4.2.1. The nullable variables of G are {S, A, C}.
The equivalent essentially noncontracting grammar Gy is given below.

G: S—> ACA G: S—> ACA|CA|AA|AC|A|C|A
A—aAua|B|C A—>aAalaa|B|C
B—bB|b B—>bB|b
C—>cC|Ar C—>cC|c

The rule § — A is obtained from § — ACA in two ways: deleting the leading A and C or
the final A and C. All A-rules, other than § — A, are discarded. o

Although the grammar G is equivalent to G, the derivation of a string in these
grammars may be quite different. The simplest example is the derivation of the null string.
Six rule applications are required to derive the null string from the start symbol of the
grammar G in Example 4.2.2, while the A-rule in Gy, generates it immediately. Leftmost
derivations of the string aba are given in each of the grammars.

G: S= ACA G.:.S=A
=aAaCA = ala
=aBaCA = aBa
=abaCA = aba
= abaA
= abaC
= aba

The first rule application of the derivation in Gy, generates only variables that eventually
derive terminals. Thus, all applications of the A-rule are avoided.

4.3 Elimination of ChainRules 113

Example 4.2.3
Let G be the grammar
G: S— ABC
A—>aA|A
B—bB|A
C—cClA

that generates a*b*c*. The nullable variables of G are S, A, B, and C. The equivalent
grammar obtained by removing X rules is

Gy: S— ABC|AB|BC|AC|A|B|C|A
A—>aA|a
B—bB|b
C—cCle.

The S rule that initiates a derivation determines which symbols occur in the derived string.
Since S is nullable, the rule S — A is added to the grammar. O

Elimination of Chain Rules

The application of arule A — B does not increase the length of the derived string, nor does
it produce additional terminal symbols; it simply renames a variable. Rules of this form are
called chain rules. The idea behind the removal of chain rules is realizing that a chain rule
is nothing more than a renaming procedure. Consider the rules

A—>daAla|B
B—bB|b|C.

The chainrule A — B indicates that any string derivable from the variable B is also derivable
from A. The extra step, the application of the chain rule, can be eliminated by adding A
rules that directly generate the same strings as B. This can be accomplished by adding a
rule A — w for each rule B — w and dcleting the chain rule. The chain rule A — B can
be replaced by three A rules yielding the equivalent rules

A—>aAla|bB|b|C
B—>bB|b|C.

Unfortunately, another chain rule was created by this replacement. The preceding procedure
could be repeated to remove the new chain rule. Rather than repeating the process, we will
develop a technique to remove all chain rules at one time.

114 Chapter4 Normal Forms for Context-Free Grammars

A derivation A = C consisting solely of chain rules is called a chain. Algorithm 4.3.1
generates all variables that can be derived by chains from a variable A in an essentially non-
contracting grammar. This set is denoted CHAIN(A). The set NEW contains the variables
that were added to CHAIN(A) on the previous iteration.

Algorithm 4.3.1
Construction of the Set CHAIN(A)

input; essentially noncontracting context-free grammar G = (V, X, P, 5)

1. CHAIN(A) .= {A}
2. PREV =0
3. repeat

3.1. NEW := CHAIN(A) — PREV

3.2. PREV :=CHAIN(A)

3.3. for each variable B € NEW do

for each rule B — C do
CHAIN(A) := CHAIN(A) U {C}
until CHAIN(A) = PREV

Algorithm 4.3.1 is fundamentally different from the algorithm that generates the nul-
lable variables. The strategy for finding nullable variables begins by initializing the set with
the variables that generate the null string with one rule application. The rules are then ap-
plied backward; if the right-hand side of a rule consists entirely of variables in NULL, then
the left-hand side is added to the set being built.

The generation of CHAIN(A) follows a top-down approach. The repeat-until loop iter-
atively construcis all variables derivable from A using chain rules. Each iteration represents
an additional rule application to the previously discovered chains. The proof that Algorithm
4.3.1 gencrates CHAIN(A) is left as an exercise.

Lemma 4.3.2

Let G=(V, X, P, §) be an essentially noncontracting context-free grammar. Algorithm
4.3.1 generates the set of variables derivable from A using only chain rules.

The variables in CHAIN(A) determine the substitutions that must be made to remove
the A chain rules. The grammar obtained by deleting the chain rules from G is denoted G¢.

Theorem 4.3.3

LetG=(V, X, P, S) be an essentially noncontracting conlext-free grammar. There is an
algorithm to construct a context-free grammar G that satisfies

i) L(Gc) =L(G).
i1) Gg is essentially noncontracting and has no chain rules.

4.3 Elimination of Chain Rules 115

Proof. The A rules of G are constructed from the set CHAIN(A) and the rules of G. The
rule A — w is in P if there is a variable B and a string w that satisfy

i) B € CHAIN(A).

ii) B— weP.
iii) w € V.
Condition (iii) ensures that Pc does not contain chain rules. The variables, alphabet, and
start symbol of G¢ are the same as those of G.

By Lemma 4.1.2, every string derivable in G is also derivable in G. Consequently,

L(Gc) € L(G). Now let w € L(G) and A ;: B be a maximal sequence of chain rules used
in the derivation of w. The derivation of w has the form

S= uAv = uBv=>upv = w,
G G G G

where B — p is a rule, but not a chain rule, in G. The rule A — p can be used to replace
the sequence of chain rules in the derivation. This technique can be repeated to remove all
applications of chain rules, producing a derivation of w in Gc¢. =

Example 4.3.1

The grammar G is constructed from the grammar G; in Example 4.2.2. Since G, is
essentially noncontracting, Algorithm 4.3.1 generates the variables derivable using chain
rules. The computations construct the sets

CHAIN(S) ={S, A, C, B)
CHAIN(A) = {A, B, C}
CHAIN(B) = {B}
CHAIN(C)={C}.
These sets are used to generate the rules of G¢.
Pe: S > ACA|CA|AA| AC|aAa|aa |bB |b|cClc|A

A—>aAalaa|bB|b|cC|c

B—>bB|b

C—ocClc a

The removal of chain rules increases the number of rules in the grammar but reduces
the length of derivations. This is the same trade-off that accompanied the construction of
an essentially noncontracting grammar. The restrictions require additional rules to generate
the language but simplify the derivations.

Eliminating chain rules from an essentially noncontracting grammar preserves the
noncontracting property. Let A — w be a rule created by the removal of chain rules. This

116 Chapter4 Normal Forms for Context-Free Grammars

implies that there is a rule B — w for some variable B € CHAIN(A). Since the original
grammar was essentially noncontracting, the only A-rule is S — A. The start symbol, being
nonrecursive, is not a member of CHAIN(A) for any A # §. It follows that no additional
A-rules are produced in the construction of Pc.

Each rule in an essentially noncontracting grammar without chain rules has one of the
following forms:

i) S— A,
i) A—>a,or
iil) A — w,
where w € (V U £)* is of length at least two. The rule S — A is used only in the derivation

of the null string. The application of any other rule adds a terminal to the derived string or
increases the length of the string.

Useless Symbols

Grammars are designed to generatc languages, and variables define the structure of the
sentential forms during the string-generation process. Ideally, every variable in a grammar
should contribute to the generation of strings of the language. The construction of large
grammars, making modifications to existing grammars, or sloppiness may produce variables
that do not occur in derivations that generate terminal strings. Consider the grammar
G: S— AC|BS|B

A—uaA|aF

B—CF|b

C—>cC|D

D—aD|BD|C

E—>aA|BSA

F—> bB|b.
What is L(G)? Are there variables that cannot possibly occur in the generation of terminal

strings, and if so, why? Try to convince yourself that L(G) = b*. To begin the process of
identifying and removing useless symbols, we make the following definition.

Definition 4.4.1
Let G be a context-free grammar. A symbol x € (V U Z) is useful if there is a derivation

S= uxv=w,
G G

where u, v € (VU Z)* and w € X”. A symbol that is not useful is said to be useless.

44 Useless Symbols 117

A terminal is useful if it occurs in a string in the language of G. For a variable to be
useful, two conditions must be satisfied. The variable must occur in a sentential form of the
grammar; that is, it must occur in a string derivable from S. Moreover, every symbol occur-
ring in the sentential form must be capable of deriving a terminal string (the null string is
considered to be a terminal string). A two-part procedure to eliminate useless variables is
presented. Each construction establishes one of the requirements for the variables to be
useful.

Algorithm 4.4.2 builds a set TERM consisting of the variables that derive terminal
strings. The strategy used in the algorithm is similar to that used to determine the set of
nullable variables of a grammar. The proof that Algorithm 4.4.2 generates the desired set
follows the strategy employed by the proof of Lemma 4.2.2 and is left as an exercise.

Algorithm 4.4.2
Construction of the Set of Variables That Derive Terminal Strings

input: context-free grammar G = (V, Z, P, S)

1. TERM :={A |thereis arule A - w € P with w € %)
2. repeat
2.1. PREV = TERM
2.2. for each variable A € V do
if there is an A rule A — w and w € (PREV U X)* then
TERM := TERM U {A}
until PREV = TERM

Upon termination of the algorithm, TERM contains the variables of G that generate
terminal strings. Variables not in TERM are useless; they cannot contribute to the generation
of strings in L(G). This observation provides the motivation for the construction of a
grammar Gr that is equivalent to G and contains only variables that derive terminal strings.

Theorem 4.4.3

Let G=(V, X, P, §) be a context-free grammar. There is an algorithm to construct
a context-free grammar Gt = (Vy, Zr, P, S) that satisfies

i) L(Gr) =L(G).
ii) Every variable in Gy derives a terminal string in Gr.

Proof. P is obtained by deleting all rules containing variables of G that do not derive ter-
minal strings, that is, all rules containing variables in V — TERM. The components of Gt are

Vr =TERM,
Pr={A—> w|A—> wisarmleinP, A € TERM, and w € (TERM U X)*}, and
Yt ={a € L | a occurs in the right-hand side of a rule in P}.

The alphabet X consists of all the terminals occurring in the rules in Py.

118 Chapter4 Normal Forms for Context-Free Grammars

We must show that L(Gt) = L(G). Since Pt C P, every derivation in Gy is also a
derivation in G and L(Gt) € L(G). To establish the opposite inclusion, we must show that
removing rules that contain variables in V — TERM has no effect on the set of terminal
strings generated. Let S => w be a derivation of a string w € L(G). This is also a derivation
in G. If not, a variable from V — TERM must occur in an intermediate step in the derivation.
A derivation from a sentential form containing a variable in V — TERM cannot produce a
terminal string. Consequently, all the rules in the derivation are in Py and w € L(Gp). ®

Example 4.4.1

The grammar G is constructed for the grammar G introduced at the beginning of this
section.

G: S— AC|BS|B
A—aA|aF
B—>CF|b
C—>cC|D
D—aD|BD|C
E—>aA|BSA
F—>bB|b

Algorithm 4.4.2 is used to determine the variables of G that derive terminal strings.

Iteration TERM PREV

0 {B, F}

1 {B,F, A, S} {B, F}

2 {B,F, A, S, E} {B,F, A, S}

3 {B,F. A,S, E} {B,F, A,S,E}

Using the set TERM to build Gt produces
Vr={S, A, B, E, F)

Tr={a, b}

Pr: §— BS|B
A—>aAlaF
B—>b
E—>aA|BSA

F— bB|b.

44 Useless Symbols 119

The indirectly recursive derivation produced by an occurrence of the variables C or D, which
can never be exited once entered, is discovered by the algorithm. All rules containing these
variables are deleted. a

The construction of Gt completes the first step in the removal of useless variables.
All variables in Gy derive terminal strings. We must now remove the variables that do not
occur in sentential forms of the grammar. A set REACH is built that contains all variables
derivable from S.

Algorithm 4.4.4
Construction of the Set of Reachable Variables

input: context-free grammar G = (V, X, P, S)

1. REACH ;= {S}
2. PREV:=§
3. repeat

3.1. NEW :=REACH — PREV

3.2. PREV :=REACH

3.3. for each variable A € NEW do

for each rule A — w do add all variables in w to REACH
until REACH = PREV

Algorithm 4.4.4, like Algorithm 4.3.1, uses a top-down approach to construct the
desired set of variables. The set REACH is initialized to S. Variables arc added to REACH
as they are discovered in derivations from S.

Lemma 4.4.5

Let G=(V, &, P, S) be a context-free grammar. Algorithm 4.4.4 generates the set of
variables reachable from S.

Proof. First we show that every variable in REACH is derivable from S. The proof is by
induction on the number of iterations of the algorithm.

The set REACH is initialized to S, which is clearly reachable. Assume that all variables
in the set REACH after » iterations are reachable from S. Let B be a variable added to
REACH in iteration n + 1. Then there is a rule A — uBv where A is in REACH after n
iterations. By induction, there is a derivation S => x Ay. Extending this derivation with the
application of A — u Buv establishes the reachability of B.

We now prove that every variable reachable from S is eventually added to the set
REACH. If S = uAv, then A is added to REACH on or before iteration 7. The proof is
by induction on the length of the derivation from S.

The start symbol, the only variable reachable by a derivation of length zero, is added
to REACH at step 1 of the algorithm. Assume that each variable reachable by a derivation
of length » or less is inserted into REACH on or before iteration .

120 Chapter4 Normal Forms for Context-Free Grammars

Let S = xAy => xuBuvy be a derivation in G where the (n + 1)st rule applied is
A — uBv. By the inductive hypothesis, A has been added to REACH by iteration n. B
is added to REACH on the succeeding iteration. |]

Theorem 4.4.6

Let G=(V, I, P, S) be a context-free grammar. There is an algorithm Lo construct a
conlext-free grammar Gy; that satisfies

i) L(Gy) =L(G).
ii) Gy has no useless symbols.

Proof. The removal of useless symbols begins by building G from G. Algorithm 4.4.4 is
used to generate the variables of G that are reachable from the start symbol. All rules of
G that reference variables not reachable from § are deleted to obtain Gy, defined by

Vy =REACH,
Py={A—> w|A— wePr, Ac REACH, and w € (REACHU %)}, and
Xy = {a € T | a occurs in the righl-hand side of a rule in Py}.

To establish the equality of L(Gy) and L(Gr), it is sufficient to show that every string
derivable in G is also derivable in Gy;. Lel w be an element of L(Gr). Every variable
occurring in the derivation of w is reachable and each rule is in Py;. |

Example 4.4.2

The grammar Gy, is constructed from the grammar G in Example 4.4.1. The set of reachable
variables of G is obtained using Algorithm 4.4.4.

Tteration REACH PREV NEW

0 {8} @
1 {s, B} {s) {8}
2 (S. B) {s.B} (B}

Removing all references to the variables A, E, and F produces the grammar

Gy: S— BS|B
B —b.
The grammar Gy is equivalent to the grammar G given at the beginning of the section.
Clearly, the language of these grammars is bt. a

Removing useless symbols consists of the two-part process outlined in Theorem 4.4.6.
The first step is the removal of variables that do not generate terminal strings. The resulting

45 Chomsky Normal Form 121

grammar is then purged of variables that are not derivable from the start symbol. Applymg
these procedures in reverse order may not remove all the useless symbols, as shown in the
next example.

Example 4.4.3
Let G be the grammar

G: S—>al|AB
A—b.

The necessity of applying the transformations in the specified order is exhibited by applying
the processes in both orders and comparing the results,

Remove variables that do not

generate terminal strings: Remove unreachable symbols:
S—a S—>al|AB
A=b A-b

Remove variables that do not

Remove unreachable symbols: gencrate terminal strings:
S—a S—a
A—>b

The variable A and terminal » are useless, but they remain in the grammar obtained by
reversing the order of the transformations. u|

The transformation of grammars to normal forms consists of a sequence of algorithmic
steps, each of which preserves the previous ones. The removal of useless symbols will not
undo any of the restrictions obtained by the construction of G, or G¢. These transforma-
tions only remove rules; they do not alter any other feature of the grammar. However, useless
symbols may be created by the process of transforming a grammar to an equivalent non-
contracting grammar. This phenomenon is illustrated by the transformations in Exercises 8
and 17,

Chomsky Normal Form

A normal form is described by a set of conditions that each rule in the grammar must satisfy.
The Chomsky normal form places restrictions on the length and the composition of the
right-hand side of a rulc.

122 Chapter4 Normal Forms for Context-Free Grammars

Definition 4.5.1

A context-free grammar G = (V, X, P,) is in Chomsky normal form if each rule has
one of the following forms:

i) A— BC,
i) A—a,or
iii) §— A,
where B, C € V — {S}.

Since the maximal number of symbols on the right-hand side of a rule is two, the
derivation tree associated with a derivation in a Chomsky normal form grammar is a binary
tree. The application of a rule A — BC produces a node with children B and C. All other
rule applications produce a node with a single child. The representation of the derivations as
binary derivation trees will be used in Chapter 7 to establish repetition properties of strings
in context-free languages. In the next section, we will use the ability to transform a grammar
G into Chomsky normal form to obtain a decision procedure for membership of a string in
L(G).

The conversion of a grammar to Chomsky normal form continues the sequence of
modifications presented in the previous sections. We assume that the grammar G to be
transformed has a nonrecursive start symbol, no A-rules other than S — A, no chain rules,
and no useless symbols.

Theorem 4.5.2

Let G=(V, I, P, §) be a context-free grammar. There is an algorithm to construct a
grammar G’ = (V/, Z, P/, §’) in Chomsky normal form that is equivalent to G.

Proof. After the preceding transformations, a rule has the form § — A, A = a,or A — w,
where w € (VU) — {S})* and /ength(w) > 1. The set P’ of rules of G’ is built from the
rules of G.

The only rule of G whose right-hand side has length zero is S — A. Since G does not
contain chain rules, the right-hand side of a rule A — w is a single terminal whenever the
length of w is one. In either case, the rules already satisfy the conditions of Chomsky normal
form and are added to P'.

Let A — w be a rule with lerngrh(w) greater than one. The string w may contain both
variables and terminals. The first step is to remove the terminals from the right-band side of
all such rules. This is accomplishcd by adding new variables and rules that simply rename
cach terminal by a variable. For example, the rule

A— bDcF
can be replaced by the three rules

A— B'DC'F

B —>b

C'—ec.

4.5 Chomsky Normal Form 123

After transforming each rule whose right-hand side has length two or more in this manner,
the right-hand side of a rule consists of the null string, a terminal, or a string of variables.
Rules of the latter form must be broken into a sequence of rules, each of whose right-hand
side consists of two variables. The sequential application of these rules should generate the
right-hand side of the original rule. Continuing with the previous example, we replace the
A rule by the rules

A— B'Ty
T| g DT2
T2 — C'F.

The variables T; and T, are introduced to link the sequence of rules. Rewriting each rule
whose right-hand side has length greater than two as a sequence of rules completes the

transformation to Chomsky normal form. |]
Example 4.5.1
Let G be the grammar

S —>aABCla

A—>aAla

B — beB | be

C—-cClec.

This grammar already satisfies the conditions placed on the start symbol and A-rules and
does not contain chain rules or useless symbols. The equivalent Chomsky normal form
grammar is constructed by transforming each rule whose right-hand side has length greater
than two.

G: S§— ATj|a
A'—>a
T, > AT,
T, — BC
A= A'Ala
B— B'Ty| B'C'
T;5— C'B
C—-CClc
B'—>b
C'>c a

124 Chapter4 Normal Forms for Context-Free Grammars

Example 4.5.2
The rules
X —>aXb|ab
generate the strings {a’b’ | i > 1}. Adding a start symbol S, the rule § — X, and removing
chain rules produces the grammar
S—aXb|ab
X —>aXb|ab.
The Chomsky normal form
S— AT | AB
T—> XB
X - AT |AB
A—>a
B—b

is obtained by adding the rules A — a and B — b that provide aliases for the terminals and
by reducing the length of the right-hand sides of the S and X rules. ul

The CYK Algorithm

Given a context-free grammar G and a string u, is # in L(G)? This question is called
the membership problem for context-free grammars. Using the structure of the rules in
a Chomsky normal form grammar, J. Cocke, D. Younger, and T. Kasami independently
developed an algorithm to answer this question. The CYK algorithm employs a bottom-up
approach to determine the derivability of a string.

Let # =xxy ... x, be a string to be tested for membership and let x; ; denote the
substring x; . . . x; of u. Note that the substring x; ; is simply x;, the ith symbol in u. The
strategy of the CYK algorithm is

® Step I For each substring x; ; of # with length one, find the set X; ; of all variables A
with arule A — x; ;.

® Step 2: For each substring x; ;. of u with length two, find the set X; ; ., of all variables
thal initiate derivations A = x; ;).

® Step 3: For each substring x; ; ., of u with length three, find the set X; ; , , of all variables
that initiate derivations A = x; ;.

® Step n — 1: For the substrings x; ,_, X, , of u with length n — 1, find the sets X, ,_;
and X, , of all variables that initiate derivations A = x; ,_; and A => x, ,, respectively.

4.6 The CYK Algorithm 125

® Step n: For the string x, , = u of length #, find the set X, ,, of all variables that initiate
derivations A = x; .

If the start symbol S is in X ,, then u is in the language of the grammar. The generation
of the sets X; ; uses a problem solving technique known as dynamic programming. The
important feature of dynamic programming is that all the information needed to compute a
set X; ; at step ¢ has already been obtained in steps 1 through ¢ — 1.

Let’s see why this property is true for derivations using Chomsky normal form gram-
mars. Building the sets in step | is straightforward; A € X;; if A — x; is a rule of the
grammar.

For step 2, a derivation of the substring x; ; ;| has the form

A= BC
= x,-C
= XiXit1.
Since B derives x; and C derives x; ,, these variables willbe inX; ; and X, ; ;1. A variable
Aisaddedto X;;,, whenthereisarule A - BC with B€X;, and C € X4} ;41-
Now we consider the generation of the set X; ; ,, in step 7 of the algorithm. We wish to
find all variables that derive the substring x; ; ,,. The first rule application of such a derivation

produces two variables, call them B and C. This is followed by derivations beginning with
B and C that produce x; ;.. Thus the derivation has the form

A= BC
£> x,-‘kC

= X kXk+Li+t

where B generates x; ; and C generates x| ;4, for some k between i and ¢ — 1. Conse-
quently, A derives x; ;,, only if there is arule A — BC and a number & betweeni andr — |
such that B € X; ; and C € Xj ;4 All of the sets that need to be examined in checking
this condition are produced prior to step r.

The sets X; ; may be represented as the upper triangular portion of an n x n matrix.

1 2 3 - n-1 n
1 X1 X2 X3 e Xin-1 Xln
2 X2 Xo3 .- Xs -1 Xom
3 X; 3 X3.n—l XJ,n
n—1 Xa—tm-1 X1
n Xon

126 Chapter4 Normal Forms for Context-Free Grammars

The CYK algorithm constructs the entries in a diagonal by diagonal mariner starting with
the main diagonal and culminating in the upper right corner with X ,,.

We illustrate the CYK algorithm using the grammar from Example 4.5.2 that generates
{a'b’ | i > 1} and the string aaabbb. Table 4.1 traces the steps of the algorithm and the result
of the computation is given in the table

1 2 3 4 5 6
1 [{A) Y 7 7 7 (S. X}
2 (A}) 2 {s. X} {1}
3 (A} 1S, X} {T} @
4 (B} 9 @
5 (B)]
6 (B)

The sets along the diagonal are obtained from the rules A — a and B — b. Step 2
generates the entries directly above the diagonal. The construction of a set X; ;,; need
only consider the substrings x; ; and x; 1 ;4. For example, a variable is in X , if there are
variables in X , = {A} and X, ; = { A} that make up the right-hand side of a rule. Since AA
is not the right-hand side of a rule, X , = @. The set X3 4 is generated from X3 3 = {A} and
X4.4 = {B}. The string AB is the right-hand side of S — AB and X — AB. Consequently,
S and X are in X3’4.

Al step ¢, there are + — 1 separate decompositions of a substring x; ;,, that must be
checked. The set X; ;, given in the rightmost column of Table 4.1, is the union of variables
found examining all 7 — 1 possibilities. For example, computing X3 5 needs to consider the
two decompositions x3 3x4 5 and x3 4x5 5 of x3 5. The variable T is added to this set since
S €X34, B€Xs5, and T — SB is arule, The presence of S in the set X 4, indicates that
the string aaabbb is in the language of the grammar.

Utilizing the previously outlined steps, the CYK solution to the membership problem
is given in Algorithm 4.6.1. The sets along the diagonal are computed in line 2. The variable
step indicates the length of the substring being analyzed. In the loop beginning at step 3.1,
i indicates the starting position of a substring and k indicates the position of split between
the first and second components.

Algorithm 4.6.1
CYK Algorithm

input: context-free grammar G = (V, I, P,)
string u =Xxjx7...X, € L*

4.6 The CYK Algorithm 127

1. initialize all X,;j to @
2. fori=1ton
for each variable A, if thereisarule A — x; then X, ; :=X;; U{A}
3. forstep=2ton
3.1. fori=1torn —step +1
31.1. fork=itoi+step—2
if there are variables B € X; 4, C € Xg11,i4s1ep—1> a0d
arule A — BC, then Xi'i_,_s,e,,_, = Xl',i+é'?ep—l U {A}
4. ueL(G)if S € X,

The CYK algorithm, as outlined above, is designed to determine whether a string u is
derivable in a Chomsky normal form grammar G. The algorithm can be modified to pro-
duce derivations of strings in L(G), that is, to be a parser. This can be accomplished by
recording the justifications for the addition of variables into the sets X; ;. To demonstrate
the approach, we will use the trace of the computation in Table 4.1 to produce the deri-
vation of the string aaabbb. The column labeled ‘Sets’ indicates the sets that contain the
variables matching the right-hand side of the rule. For example, the variable S is added
to X¢ ¢ because the occurrence of A € X) and T € X, ¢ match the right-hand side of the
rule S — AT. Reversing this construction, the rule § — AT is used in the derivation of
aaabbb.

Derivation Sets
S= AT AeX|), TeXsg
=aT Te x2.6
=aXB XeXys5.BeXsp
= aATB AeX;1, TeXys, BeXeq
= aaTB TeX;s.BeXse
=aaXBB XeX34,BeXss.BeXqp
= aaABBB AeX;3, BeXya BeXss, BeXeg
= aaabbb

The applicability of the CYK algorithm as a parser is limited by the computational
requirements needed to find a derivation. For an input string of length n, (n% 4 n)/2 sets
need to be constructed to complete the dynamic programming table. Moreover, each of these
sets may require the consideration of multiple decompositions of the associated substring. In
Part V of this book we examine grammars and algorithms designed specifically for efficient

parsing.

128 Chapter4 Normal Forms for Context-Free Grammars

TABLE 4.1 Trace of CYK Algorithm

Step String x; ; Substrings Xik b, U X;.;

2 x2=ad X110 X2.2 {A} {A} @
Xp3=aa X2.2, X33 {A) {A} [/
x34=ab X3.3 X3,4 {A} {B} {8, X}
x45=bb X440 X5.5 {B} {B} #
xs,6 =bb X5.5» X6,6 {B} {B} 9

3 X3 =aaa X1 X33 {A}) @

_ X1,2, X33 2 {A) 0
X34 =aab X220 %34 {A} {s. X}]

7 X33 X44 2 {B) .
X35 =abb X33 X4.5 {A} @]

_ X341 X, {s.x} {B}) ry
X4 6= bbb X440 X5.6 {B} a a

X450 X6.6 a {B} /2
4 x4 =aaab X110 X24 {A} @]
X1,20 X3.4 % {S. X} a
X1.3 X4.4 [/ {B} @

xp,5=aabb X322, %35 {A} {7} {s, X}

X33 Xa,5 @ @ @
X34, X5.5 # {B} @
x3.6 = abbb X33 X4.6 {4} # @
Gaorss S X} 8 B
X3.5 X6.,6 {7} {B})
5 X s =aaabb X1 %25 {A} {S. X} L]
X|1,2» xls 2 [T} ﬂ
X135 %45 (7] (] 4]

_ X141 Xs,5 4 (B} o
X26= aabbb X2.2. %36 {A} /] 7]
X2,3. Xa6 a] ?
X241 X56 a ? a

X2,5 X6,6 {s,x} (B} {ry

6 x| g=aaahb x11, X5 {A} {T} (S, X}

X121 X3,6 U U a
X1,3 X4,6 g @ 0
X1.4) X5.6) @]
x5 X6,6 @ {B}]

4.7 Removal of Direct Left Recursion 129

Removal of Direct Left Recursion

In a derivation of an arbitrary context-free grammar, rule applications can generate terminal
symbols in any position and in any order in a derivation. For example, derivations in
grammar G, generate terminals to the right of the variable, while derivations in G, generate
terminals on both sides.

Gy S— Aa Gy S — aAb
A= Aal|b A—>aAb|A

The Greibach norinal form adds structure to the generation of the terminals in a derivation.
A string is built in a left-to-right manner with one terminal added on each rule application.
In a derivation S = u Av, where A is the leftmost variable, the string u is called the terminal
prefix of the sentential form. Our objective is to construct a grammar in which the terminal
prefix increases with each rule application.

The grammar G, provides an example of rules that do the exact opposite of what is
desired. The variable A remains as the leftmost symbol until the derivation terminates with
application of the rule A — b. Consider the derivation of the string baaa

S = Aa
= Aaa
= Aaaa
=> baaa.

Applications of the left-recursive rule A — Aa generate a string of a’s but do not increase
the length of the terminal prefix. A derivation of this form is called directly left-recursive.
The prefix grows only when the non—left-recursive rule is applied.

An important component in the transformation to Greibach normal form is the ability
to remove left-recursive rules from a grammar. The technique for replacing left-recursive
rules is illustrated by the following examples.

a) A— Aa|b b) A— Aa | Ab|b|c ¢) A—-> AB|BA|a
B—b|c

The sets generated by these rules are ba*, (b U ¢)(a U b)*, and (b U c)*a(b U ¢)*, respec-
tively. The left recursion builds a string to the right of the recursive variable. The recursive
sequence is terminated by an A rule that is not left-recursive. To build the string in a left-
to-right manner, the nonrecursive rule is applied first and the remainder of the string is
constructed by right recursion. The following rules generate the same strings as the previous
examples without using direct left recursion.

a) A>bZ|b by A>bZ|cZ|b|c ¢) A—> BAZ|aZ|BA|a
Z—aZla Z—saZ|bZ|al|b Z—>BZ|B
B—>b|c

130 Chapter4 Normal Forms for Context-Free Grammars

The rules in (a) generate ba™ with left recursion replaced by right recursion. With these rules,
the derivation of baaa increases the length of the terminal prefix with each rule application.

A=bZ
= baZ
= baaZ
= baaa

The removal of the direct left recursion requires the addition of a new variable to the
grammar. This variable introduces a set of right-recursive rules. Direct right recursion causes
the recursive variable to occur as the rightmost symbol in the derived string.

To remove direct left recursion, the A rules are divided into two categories: the left-
recursive rules

A—>Au||Au2|...|Auj
and the rules
A= vl | v

in which the first symbol of each v, is not A. A leftmost derivation from these rules consists
of applications of left-recursive rules followed by the application of a rule A — v;, which
ends the direct left recursion. Using the technique illustrated in the previous examples, we
construct new rules that initially generate v; and then produce the remainder of the string
using right recursion.
The A rules
Ay .. |nylnZ|...|nZ

initially place one of the v;'s on the left-hand side of the derived string. If the string contains
a sequence of u;’s, they are generated by the Z rules

Z—>u|Z|...|ujZ|u1|...|uj

using right recursion.

Example 4.7.1
A set of rules is constructed to generate the same strings as
A — Aa| Aab |bb|b

without using direct left recursion. These rules generate (b U bb)(a U ab)*. The direct left
recursion in derivations using the original rules is terminated by applying A — bor A — bb.
To build these strings in a left-to-right manner, we use the A rules

A—bb|b|bbZ |bZ

to generate the leftmost symbols of the string, The Z rules generate (a U ab)™ using the
right-recursive rules

Z—+aZ|abZ |a|ab. u]

4.8 Greibach Normal Form 131

Lemma 4.7.1

Let G=(V, I, P, S) be a context-free grammar and let A € V be a directly left-
recursive variable in G. There is an algorithm to construct an equivalent grammar G’ =
(V', £, P, " in which A is not directly left-recursive.

Proof. We assume that the start symbol of G is nonrecursive, the only A-rule is § — A,
and P does not contain the rule A — A. If this is not the case, G can be transformed to
an equivalent grammar satisfying these conditions. The variables of G’ are those of G
augmented with one additional variable to generate the right-recursive rules. P’ is built from
P using the technique outlined above.

The new A rules cannot be left-recursive since the first symbol of each of the v;’s is not
A. The Z rules are also not left-recursive. The variable Z does not occur in any one of the
u;’s and the u;’s are nonnull by the restriction on the A rules of G. |

This technique can be used repeatedly to remove all occurrences of left-recursive rules
while preserving the language of the grammar. However, a derivation using rules A — Bu
and B — Av can generate the sentential forms

A= Bu
= Avu
= Buvu
= Avuvu

exhibiting the same lack of growth of the terminal prefix as derivations using direct left
recursion. The conversion to Greibach normal form will remove all possible occurrences of
indirect left recursion.

E Greibach Normal Form

In the Greibach normal form, the application of every rule adds one symbol to the terminal
prefix of the derived string. This ensures that left recursion, direct or indirect, cannot occur.
It also ensures that the derivation of a string of length n > 0 consists of exactly n rule
applications.
Definition 4.8.1
A context-free grammar G = (V, X, P, §) is in Greibach normal form if each rule has
one of the following forms:

i) A>aAlA; ... A,

i) A —aq,or
i) §— A,

whereae Y and A; € V- {S}fori=12,...,n.

132 Chapter4 Normal Forms for Context-Free Grammars

The conversion of a Chomsky normal form grammar to Greibach normal form uses
two rule transformation techniques: the rule replacement scheme of Lemma 4.1.3 and the
transformation that removes left-recursive rules. The procedure begins by ordering the
variables of the grammar. The start symbol is assigned the number one; the remaining
variables may be numbered in any order. Different numberings change the transformations
required to convert the grammar, but any ordering suffices.

The first step of the conversion is to construct a grammar in which every rule has one
of the following forms:

i) §— A,

i) A — aw, or
iii) A — Bw,
where w € V* and the number assigned to B in the ordering of the variables is greater than
the number of A. The rules are transformed to satisfy condition (iii) according to the order
in which the variables are numbered. The conversion of a Chomsky normal form grammar

to Greibach normal form is illustrated by tracing the transformation of the rules of the
grammar G:

G: S—> AB|A
A— AB|CB|a
B— AB|b
C—> AC|c.

The variables S, A, B, and C are numbered 1, 2, 3, and 4, respectively.

Since the start symbol of a Chomsky normal form grammar is nonrecursive, the §
rules already satisfy the three conditions. The process continues by transforming the A
rules into a set of rules in which the first symbol on the right-hand side is either a terminal
or a variable assigned a number greater than two. The left-recursive rule A — A B violates
these restrictions. Lemma 4.7.1 can be used to remove the direct left recursion, yielding

S— AB|A

A— CBR||aR,|CB]|a
B— AB|b

C— AC|c

R,— BR,|B.

Now the B rules must be transformed to the appropriate form. The rule B — A B must
be replaced since the number of B is three, and A, which occurs as the first symbol on the
right-hand side, is two. Lemma 4.1.3 permits the leading A in the right-hand side of the rule
B — AB to be replaced by the right-hand side of the A rules, producing

4.8 Greibach Normal Form 133

S— AB| A
A— CBR|aR,|CB|a
B— CBR,B|aR,B|CBB|aB |b
C— AC|c
R,— BR, | B.
Applying the replacement techniques of Lemma 4.1.3 to the C rules creates two left-

recursive rules.
S— AB|A

A— CBR,|aR||CB|a
B—> CBRB|aR\B|CBB|aB |b
C - CBR\C|uR,C|CBC|aC|c
R,— BR,|B
The left recursion can be removed, introducing the new variable R;.
S— AB|A
A— CBRy|aR{|CB|a
B— CBR\B|aR\B|CBB |aB|b
C—>aRC|aC|c|aR,CRy|aCR;y|cR,
R,— BR,|B
Ry, — BR\CR,| BCR, | BR\C | BC

The original variables now satisfy the condition that the first symbol of the right-hand
side of a rule is either a terminal or a variable whose number is greater than the number of
the variable on the left-hand side. The variable with the highest number, in this case C, must
have a terminal as the first symbol in each rule. The next variable, B, can have only C’s or

terminals as the first symbol. A B rule beginning with the variable C can then be replaced
by a set of rules, each of which begins with a terminal, using the C rules and Lemma 4.1.3.

Making this transformation, we obtain the rules
S— AB| A
A—> CBR,|uR,|CB |a

B—aR,B|aB|b
- aRlCBRIB 'aCBR|B | CBR;B laRICRzBRIB IaCRzBR,B | CRzBR|B

— aR|CBB |aCBB |cBB |aR,CR,BB |aCR;BB |cR,BB
C—>aRC|aC|c|aRCRy|aCR;|cRy
R,— BR,|B
R, — BRCR, | BCR, | BR\C | BC.

134 Chapter4 Normal Forms for Context-Free Grammars

The second list of B rules is obtained by substituting for C in the rule B — C BR; B and the
third in the rule B — CBB. The § and A rules must also be rewritten to remove variables
from the initial position of the right-hand side of a rule. The substitutions in the A rules use
the B and C rules, all of which now begin with a terminal. The A, B, and C rules can then
be used to transform the S rules, producing

S—>A
— aRB|aB
— aR,CBR,B | aCBR,B | cBR,B |aR,CR,BR,B |aCR,BR,B | cR,BR,B
— aR\CBB |aCBB | cBB|aR,CR,BB|aCR,BB | cR,BB
A—aR |a
— aRCBR,|aCBR;|cBR||aR,CR,BR||aCR,BR,| | cRy,BR,
— aR\CB|aCB |cB|aR,CRy;B|aCR,B | cR,B
B—aRB|aB|b
— aRCBR\B |aCBRB |c¢cBRB |aR,CR,BR\B|aCR,BR,B |cR,BR\B
— aR\CBB |aCBB |cBB|aR,CR,BB |aCR,BB |cR,BB
C—>aR\C|aC|c|aR,CRy|aCR;|cR,
Ry— BR|| B
Ry, - BR|,CR, | BCR, | BR\C | BC.
Finally, the substitution process must be applied to each of the variables added in the removal
of direct recursion. Rewriting these rules yields
Ry — aR{BR,|aBR,| bR,
— aR,CBR\BR;|aCBR\BR, | cBR\BR, | aR,CR,BR,BR, | aCR,BR,BR, |
cR,BR,BR,
— aRCBBR,|aCBBR,|cBBR||aR,CR,BBR,|aCR,BBR, | cRy;BBR,
Ry—aR\B|aB|b
— aR\CBRB | aCBR,B | cBR;B |aR,CR,BR B | aCR,BR,B | cR,BR\B
— aR{CBB |aCBB |cBB|aR,CR,BB|aCR,BB | cR,BB
R, —» aR{BR\CR, | aBR\CR, | bR\CR,
— aR\CBR\BR\CRy |aCBR\BR\CR, |cBRBR\CR; | aR;CR,BR|BR|\CR, |
aCRyBRBR\CR; | cRyBRBR|CR,
— aR\CBBR\CR, | aCBBR,CR, | cBBR,CR; | aR,CR,BBR\CR, |
aCR,BBR\CR, | cR,BBR,CR,

4.8 Greibach Normal Form 135

Ry — aR\BCR,|aBCR, | bCR,

— aRCBR,BCR; |aCBR{BCR, |cBR\BCR; |aR,CR;BR|BCR, |
aCR;BR\BCR; | cR,BR\BCR,

- aRlCBBCRz I GCBBCRZ | CBBCRZ laRICRzBBCRz | GCRzBBCRz I
L'RzBBCRz

R2 - GR]BR]C l aBRlC l bRIC

— aR\,CBRBR,C |aCBR\BR\C | cBRBR,C |aR,CR,BRBR\C |
aCR,BRBR|C | cR;BR|BR,C

— aR,CBBR\C |aCBBR\C |cBBR,C |aR\,CR,BBRC |aCRyBBR,C |
cR,BBR,C

Ry — aR\BC |aBC | bC

— aR\CBR\BC |aCBR\BC | ¢cBR{BC |aR\CR,BR\BC |aCR,BR|BC |
cRyBR\BC
— aR|CBBC |aCBBC | cBBC |aR,CR,BBC |aCR,BBC | cR,BBC.

The resulting grammar in Greibach normal form has lost all the simplicity of the original
grammar G. Designing a grammar in Greibach normal form is an almost impossible task.
The construction of grammars should be done using simpler, intuitive rules. As with all
the preceding transformations, the steps necessary to transform an arbitrary context-free
grammar to Greibach normal form are algorithmic and can be automatically performed by
an appropriately designed computer program. The input to such a program consists of the
rules of an arbitrary context-free grammar, and the result is an equivalent Greibach normal
form grammar.

It should also be pointed out that useless symbols may be created by the rule replace-
ments using Lemma4.1.3. The variable A is a useful symbol of G, occurring in the derivation

§= AB = aB = ab.

In the conversion to Griebach normal form, the substitutions removed all occurrences of A
from the right-hand side of rules. The string ab is generated by

S=aB=ab

in the equivalent Greibach normal form grammar.

Theorem 4.8.2

Let G be a context-free grammar. There is an algorithm to construct an equivalent context-
free grammar in Greibach normal form.

136 Chapter4 Normal Forms for Context-Free Grammars

Proof. The operations used in the construction of the Greibach normal form have previ-
ously been shown to generate equivalent grammars. All that remains is Lo show that the rules
can always be transformed to satisfy the conditions necessary to perform the substitutions.
These require that each rule have the form

Ay — Ajwwithk < j
or
Ay — aw,

where the subscript represents the ordering of the variables.

The proof is by induction on the ordering of the variables. The basis is the start symbol,
the variable numbered one. Since S is nonrecursive, this condition trivially holds. Now
assume that all variables up to number k satisfy the condition. If there is arule A, — A;w
with i < k, the substitution can be applied to the variable A; to generate a set of rules, each
of which has the form A, — A;w’ where j > i. This process can be repeated, X — i times
if necessary, to produce a set of rules that are either left-recursive or in the correct form. All
directly left-recursive variables can be transformed using the technique of Lemma 4.7.1.

]
Example 4.8.1
The Chomsky and Greibach normal forms are constructed for the grammar
S— SaB |aB
B—>bB|A.

Adding a nonrecursive start symbol §’ and removing A and chain rules yields

§'— SaB|Sa|aB|a
S— SaB|Sa|aB|a
B — bB | b.

The Chomsky normal form is obtained by transforming the preceding rules. Variables A
and C are used as aliases for a and b, respectively, and T represents the string ¢ B.

S'—> ST |SA|AB|a
S—> ST |SA|AB|a
B—>CB|b

T — AB

A—a
C—>b

4.8 Greibach Normal Form 137

The variables are ordered by §’, S, B, T, A, and C. Removing the left-recursive $ rules
produces

S'—> ST |SA|AB|a
S—> ABZ |aZ|AB|a
B—->CB|b
T — AB
A—a
C—b
Z—>TZ|AZ |T|A.
These rules satisfy the condition that requires the value of the variable on the left-hand
side of a rule to be less than that of a variable in the first position of the right-hand side.
Implementing the substitutions beginning with the A and C rules produces the Greibach
normal form grarmmar:
S'—>aBZT |aZT |aBT |aT |aBZA |aZA|aBA|aA|aB |a
S—>aBZ|aZ|aB|a
B—>bB|b
T —>aB
A—>a
C—>b
Z—>aBZ|aZ|aB|a.

The leftmost derivation of the string abaaba is given in each of the three equivalent
grammars.

G Chomsky Normal Form Greibach Normal Form
S = SaB §'=>SA S'=aBZA
= SaBaB = STA =abZA
= SaBaBaB = SATA =abaZA
= aBaBaBaB = ABATA = abaaBA
= abBaBaBaB =aBATA = abaabA
= abaBaBaB = abATA = abaaba
= abaaBaB = abaTA
= abaabBaB = abaABA
= abaabaB = abaaBA
= abaaba = abaabA

=> abaaba

138 Chapter4 Normal Forms for Context-Free Grammars

The derivation in the Chomsky normal form grammar generates six variables. Each
of these is transformed to a terminal by a rule of the form A — a. The Greibach normal
form derivation generates a terminal with each rule application. The derivation is completed
using only six rule applications. o

Exercises

For Exercises 1 through S5, construct an equivalent essentially noncontracting grammar
G, with a nonrecursive start symbol. Give a regular expression for the language of each

grammar.

1. G:S—>aS|bS|B
B—>bb|C |2
C—>cC|A

2. G:S—> ABC | A
A—>agAja
B—bB|A
C—ocC|Ar

3.G:S—> BSA|A
A—>agA|)
B — Bba | A

4. G:S—> AB|BCS
A—>aA|C
B —> bbB | b
C—ocClA

5. G:S— ABC |aBC
A—aA|BC
B—>bB|A
C—>cClAr

6. Prove Lemma 4.3.2,

For Exercises 7 through 10, construct an equivalent grammar G that does not contain chain
rules. Give a regular expression for the language of each grammar. Note that these grammars
do not contain A-rules.

7. G:S—> AS | A
A—aA|bB|C
B—>bB|b
C—cC|B

8. GGS—>A|B|C
A—aalB

Exercises 139

B—bb|C
C—cc|A

9.G:S—> A|C
A—aAla|B
B—>bB|b
C—>cClc|B

10. G:S— AB|C
A—>uA|B
B-bB|C
C—>cClal|A

11. Eliminate the chain rules from the grammar G; of Exercise 1.
12. Eliminate the chain rules from the grammar G, of Exercise 4.

13. Prove that Algorithm 4.4.2 generates the set of variables that derive terminal strings.

For Exercises 14 through 16, construct an equivalent grammar without useless symbols.
Trace the generation of the sets of TERM and REACH used to construct Gt and Gy.
Describe the language generated by the grammar.

14. G:S—> AA|CD|bB
A—daA|a
B — bB | bC
C—>cB
D—dD|d

15. G:S—>aA | BD
A—>aAl|aAB|aD
B—>aB|aC|BF
C— Bb|aAC | E
D— bD|bC|b
E—aB|bC
F—aF |aG|a
G—alb

16. G:S—> ACH | BB
A—>aA|aF
B— CFH |b
C—-aC|DH
D—>aD|BD|Ca
F—>bB|b
H—dH |d

140 Chapter4 Normal Forms for Context-Free Grammars

17. Show that all the symbols of the grammar

18.

19.

*24.

G:S—>A|CB
A->C|D
B—bB|b
C—>cC|c
D—dD|d
are useful. Construct an equivalent grammar G¢ by removing the chain rules from G.
Show that G¢ contains useless symbols.
Convert the grammar
G: S—aA|ABa
A— AAla
B — AbB | bb
to Chomsky normal form. G already satisfies the conditions on the start symbol S,
A-rules, useless symbols, and chain rules.
Convert the grammar
G: S —> aAbB | ABC |a
A—alla
B — bBcC | b
C — abc

to Chomsky normal form. G already satisfies the conditions on the start symbol S,
A-rules, useless symbols, and chain rules.

. Convert the result of Exercise 9 to Chomsky normal form.
21.
22,
23.

Convert the result of Exercise 11 to Chomsky normal form.
Convert the result of Exercise 12 to Chomsky normal form.
Convert the grammar
G: §— A| ABa| AbA
A= Aal|ir
B— Bb|BC
C—>CB|CA|bB
to Chomsky normal form.

Let G be a grammar in Chomsky normal form.
a) What is the length of a derivation of a string of length » in L(G)?

26.

27.

28.

29,

30.

Exercises 141

b) What is the maximum depth of a derivation tree for a string of length n in L(G)?
¢) What is the minimum depth of a derivation tree for a string of length » in L(G)?

. Give the upper diagonal matrix produced by the CYK algorithm when run with the

Chomsky normal form grammar from Example 4.5.2 and the input strings abbb and
aabbb.

Let G be the Chomsky normal form grammar

S— AX | AY |a
X —> AX]a
Y- BY|a
A—>a

B —b.

Give the upper diagonal matrix produced by the CYK algorithm when run with the
grammar G and the input strings baaa and abaaa.

Let G be the grammar
G:.S—~A|B
A —> aaB | Aab| Aba
B — bB | Bb|aba.
a) Give a regular expression for L(G).
b) Construct a grammar G’ that contains no left-recursive rules and is equivalent to G.
Construct a grammar G’ that contains no left-recursive rules and is equivalent to
G:S—>A|C
A— AaB|AaC |B]a
B— Bb|Cbh
C—>cCle.
Give a leftmost derivation of the string aaccach in the grammars G and G'.
Construct a grammar G’ that contains no left-recursive rules and is equivalent to
G:S—>A|B
A—> AAA|a|B
B — BBb|b.
Construct a Greibach normal form grammar equivalent to
S—>aAb|a
A— SS|b.

142 Chapter4 Normal Forms for Context-Free Grammars

31. Convert the Chomsky normal form grammar

S— BB
A—> AA|a
B— AA|BA|b

to Greibach normal form. Process the variables according to the order S, A, B.

32. Convert the Chomsky normal form grammar

S - AB| BC
A— AB|a
B— AA|CB|b
C—alb

to Greibach normal form. Process the variables according to the order S, A, B, C.

33. Convert the Chomsky normal form grammar

S— BA|AB|A
A— BB|AA|a
B— AA|b

to Greibach normal form. Process the variables according to the order S, A, B.
34. Convert the Chomsky normal form grammar

S— AB
A— BB|CC
B— AD|CA
C—a
D-b

to Greibach normal form. Process the variables according to the order S, A, B, C, D.

* 35. Prove that every context-free language is generated by a grammar in which each of the
rules has one of the following forms:

i) S— A,
i) A— a,
jiii) A= aB,or
iv) A— aBC,
where AcV,B,CeV —{S},anda € Z.

Bibliographic Notes 143

Bibliographic Notes

The constructions for removing A-rules and chain rules were presented in Bar-Hillel, Perles,
and Shamir [1961]. Chomsky normal form was introduced in Chomsky [1959]. The CYK
algorithm is named for J. Cocke, D. Younger [1967], and T. Kasami who independently
developed this tecchnique for determining derivability. Variations of this algorithm can
be used to solve the membership problem for arbitrary context-free grammars without
requiring the transformation to Chomsky normal form.

Greibach normal form is from Greibach [1965]. An alternative transformation to
Greibach normal form that limits the growth of the number of rules in the resulting gram-
mar can be found in Blum and Koch [1999]. There are scveral variations on the definition
of Greibach normal form. A common formulation requires a terminal symbol in the first
position of the string but permits the remainder of the string to contain both variables and
terminals. Double Greibach normal form, Engelfriet [1992], requires that both the leftmost
and rightmost symbol on the right-hand of rules be terminals.

A grammar whose rules satisfy the conditions of Exercise 35 is said to be in 2-normal
form. A proof that 2-normal form grammars generate the entire set of context-free languages
can be found in Hopcroft and Ullman [1979] and Harrison [1978]. Additional normal forms
for contexi-frec grammars are given in Harrison [1978].

CHAPTER 5

Finite Automata

In this chapter we introduce the family of abstract computing devices known as finite-state
machines. The computations of a finite-state machine determine whether a string satisfies
a set of conditions or matches a prescribed pattern. Finite-state machines share properties
common to many mechanical devices; they process input and generate output. A vending
machine takes coins as input and returns food or beverages as output. A combination lock
expects a sequence of numbers and opens the lock if the input sequence is correct. The input
to a finite-state machine is a string and the result of a computation indicates acceptability
of the string. The set of strings that are accepted makes up the language of the machine.

The preceding examples of machines exhibit a property that we take for granted in
mechanical computation, determinism. When the appropriate amount of money is inserted
into a vending machine, we are upset if nothing is forthcoming. Similarly, we expect the
combination to open the lock and all other sequences to fail. Initially, we require finite-
state machines to be deterministic. This condition will be relaxed to examine the effects of
nondeterminism on the capabilities of finite-state computation.

A Finite-State Machine

A formal definition of a machine is not concerned with the hardware involved in the
operation of the machine, but rather with a description of the internal operations as the
machine processes the input. A vending machine may be built with levers. a combination
lock with tumblers, and an electronic entry system is controlled by a microchip, but all accept

145

146 Chapter5 Finite Automata

input and produce an affirmative or negative response. What sort of description encompasses
the features of each of these seemingly different types of mechanical computation?

A simple newspaper vending machine, similar to those found on many street corners, is
used to illustrate the components of a finite-state machine. The input to the machine consists
of nickels, dimes, and quarters. When 30 cents is inserted, the cover of the machine may
be opened and a paper removed. If the total of the coins exceeds 30 cents, the machine
graciously accepts the overpayment and does not give change.

The newspaper machine on the street corner has no memory, at least not as we usually
conceive of memory in a computing machine. However, the machine “knows” that an
additional 5 cents will unlatch the cover when 25 cents has previously been inserted. This
knowledge is acquired by the machine’s altering its internal state whenever input is received
and processed.

A machine state represents the status of an ongoing computation. The internal operation
of the vending machine can be described by the interactions of the following seven states.
The names of the states, given in italics, indicate the progress made toward opening the
cover.

® Needs 30 cents: The state of the machine before any coins are inserted

® Needs 25 cents: The state after a nickel has been input

® Needs 20 cents: The state after two nickels or a dime have been input

® Needs 15 cents: The state after three nickels or a dime and a nickel have been input

® Needs 10 cents: The state after four nickels, a dime and two nickels, or two dimes have
been input

® Needs 5 cents: The state after a quarter, five nickels, two dimes and a nickel, or one
dime and three nickels have been input

® Needs O cents: The state that represents having at least 30 cents input

The insertion of a coin causes the machine to alter its state. When 30 cents or more
is input, the state needs 0 cents is entered and the latch is opened. Such a state is called
accepting since it indicates the correctness of the input.

The design of the machine must represent each of the components symbolically. Rather
than a sequence of coins, the input to the abstract machine is a string of symbols. A labeled
directed graph known as a state diagram is often used to represent the transformations of
the internal state of the machine. The nodes of the state diagram are the states described
above. The needs m cents node is represented simply by m in the state diagram. The state
of the machine at the beginning of a computation is designated X_). The initial state for the
newspaper vending machine is the node 30.

The arcs are labeled n, d, or ¢, representing the input of a nickel, dime, or quarter. An
arc from node x to node y labeled v indicates that processing input v when the machine
is in state x causes the machine to enter state y. Figure 5.1 gives the state diagram for the
newspaper vending machine. The arc labeled d from node 15 to 5 represents the change of
state of the machine when 15 cents has previously been processed and a dime is input. The

5.2 Deterministic Finite Automata 147

FIGURE 5.1 State diagram of newspaper vending machine.

cycles of length one from node 0 to itself indicate that any input that increases the total past
30 cents leaves the latch unlocked.

Input to the machine consists of strings from {n, d, q}*. The sequence of states entered
during the processing of an input string can be traced by following the arcs in the state
diagram. The machine is in its initial state at the beginning of a computation. The arc labeled
by the first input symbol is traversed, specifying the subsequent machine state. The next
symbol of the input string is processed by traversing the appropriate arc from the current
node, the node reached by traversal of the previous arc. This procedure is repeated until the
entire input string has been processed. The string is accepted if the computation terminates
in the accepting state. The string dndhn is accepted by the vending machine, while the string
nndn is not accepted since the computation terminates in state 5.

Deterministic Finite Automata

The analysis of the vending machine required separating the fundamentals of the design
from the implementational details. The implementation-independent description is often
referred to as an abstract machine. We now introduce a class of abstract machines whose
computations can be used to determine the acceptability of input strings.

Definition 5.2.1

A deterministic finite automaton (DFA) is a quintuple M = (Q, Z, 8, gg. F), where Q
is a finite set of states, ¥ a finite set called the alphabet, g, € Q a distinguished state known
as the start state, F a subset of Q called the final or accepting states, and § a total function
from Q x X to Q known as the transition function.

We have referred to a deterministic finite automaton as an abstract machine. To reveal
its mechanical nature, the operation of a DFA is described in terms of components that are
present in many familiar computing machines. An automaton can be thought of as a machine
consisting of five components: a single internal register, a set of values for the register, a
tape, a tape reader, and an instruction set.

The states of a DFA represent the internal status of the machine and are often denoted
q0- 91> G2 - - - » g, The register of the machine, also called the finite control, contains

148 Chapter5 Finite Automata

one of the states as its value. At the beginning of a computation, the value of the register is
qy, the start state of the DFA.

The input is a finite sequence of elements from the alphabet X. The tape stores the input
until needed by the computation. The tape is divided into squares, each square capable of
holding one element from the alphabet. Since there is no upper bound to the length of
an input string, the tape must be of unbounded length. The input to a computation of the
automaton is placed on an initial segment of the tape.

The tape head reads a single square of the input tape. The body of the machine consists
of the tape head and the register. The position of the tape head is indicated by placing the
body of the machine under the tape square being scanned. The current state of the automaton
is indicated by the value on the register. The initial configuration of a computation with input

baba is depicted
leloe] T T~

A computation of an automaton consists of the execution of a sequence of instructions.
The execution of an instruction alters the state of the machine and moves the tape head one
square to the right. The instruction set is obtained from the transition function of the DFA.
The machine state and the symbol scanned determine the instruction to be executed. The
action of a machine in state ¢; scanning an a is to reset the state to 3(g;, a). Since 8 is a
total function, there is exactly one instruction specified for every combination of state and
input symbol, hence the deterministic in deterministic finite automaton.

The objective of a computation of an automaton is to determine the acceptability of
the input string. A computation begins with the tape head scanning the leftmost square of
the tape and the register containing the state gg. The state and symbol are used to select the
instruction. The machine then alters its state as prescribed by the instruction, and the tape
head moves to the right. The transformation of a machine by the execution of an instruction
cycle is exhibited in Figure 5.2. The instruction cycle is repeated until the tape head scans a
blank square, at which time the computation terminates. An input string is accepted if the
computation terminates in an accepting state; otherwise it is rejected. The computation in
Figure 5.2 exhibits the acceptance of the string aba.

Definition 5.2.2

Let M= (Q, I, 3, gy, F) be a DFA. The language of M, denoted L(M), is the set of
strings in X* accepted by M.

A DFA can be considered to be a language acceptor; the language of the machine is
simply the set of strings accepted by its computations. The language of the machine in
Figure 5.2 is the set of all strings over {a, b} that end in a.

A DFA is a read-only machine that processes the input in a left-to-right manner; once
an input symbol has been read, it has no further effect on the computation. At any point
during the computation, the result depends only on the current state and the unprocessed

5.2 Deterministic Finite Automata 149

M: Q={q0, 91} 8(q0, @) =q,
X ={a, b} 8(g0, b) =q¢
F={q)} 3@, a)=q

3(q1. b)) =qo

ja]b]a] |

=] [[
| 2=

FIGURE 5.2 Computation in a DFA.

imput. This combination is called a machine configuration and is represented by the
ordered pair [g;, w], where g; is the current state and w € X* is the unprocessed input. The
instruction cycle of a DFA transforms one machine configuration to another. The notation
lgi, awllg [g;, w] indicates that configuration [g j» wlis obtained from [g;, aw] by the
execution of one instruction cycle of the machine M. The symbol kg, read “yields,” defines
afunction from Q x ¥ to Q x X* that can be used to trace computations of the DFA. The
M is omitted when there is no possible ambiguity.

Definition 5.2.3
The function kz on Q x % is defined by

l9i, awllw [6(qi, @), w)

fora € ¥ and w € T*, where § is the transition function of the DFA M.

The notation [g;, «] P [g;, v] is used to indicate that configuration [g;, v] can be
obtained from [g;, #] by zero or more transitions.

150 Chapter5 Finite Automata

Example 5.2.1

The DFA M defined below accepts the set of strings over {a, b} that contain the substring
bb. That is, L(M) = (a U b)*bb(a U b)*. The states and alphabet of M are

M:Q = {q, 91> 92}
X ={a, b}
F={q,}.

The transition function § is given in a tabular form called the transition table. The states are
listed vertically and the alphabet horizontally. The action of the antomaton in state g; with
input a can be determined by finding the intersection of the row corresponding to g; and
the column corresponding to a.

8 qa b

90 490 9
q 40 92
q2 9 92

The computations of M with input strings abba and abab are traced using the function .

[qq, abbal [gg, abab]
+ g0, bba] + g0, bab)
F [41, ba) F[g1, ab)
F (g2, a] + [40, b]
Flg2, 2] F g1, Al
accepts rejects
The string abba is accepted since the computation halts in state g;. a

Example 5.2.2

The newspaper vending machine from the previous section can be represented by a DFA
with the following states, alphabet, and transition function. The start state is the state 30.

Q=1{0, 5, 10, 15, 20, 25, 30) §| n d ¢
X =({(n,d, q} 0 0 0 0
F={0) sfo o o0
10 5 0 0
15 10 5 0
20 15 10 0
25 20 15 0
30 25 20 5

5.3 State Diagrams and Examples 151

The language of the vending machine consists of all strings that represent a sum of 30 cents
or more. Can you construct a regular expression that defines the language of this machine?
a

The transition function specifies the action of the machine for a given state and element
from the alphabet. This function can be extended to a function § whose input consists of a
state and a string over the alphabet. The function 8 is constructed by recursively extending
the domain from elements of T to strings of arbitrary length.

Definition 5.2.4

The extended transition fungtion, 8, of a DFA with transition function § is a function from
Q x T* to Q. The values of § are defined by recursion on the length of the input string.

i) Basis: length(w) = 0. Then w = A and S(q,-, A)=gq;.
length(w) = 1. Then w = a, for some a € I, and é(g;, a) = 8(g;. a).
ii) Recursive step: Let w be a string of length n > 1. Then w = ua and 8(g;, ua) =
8(3(‘1,, u)’ a)-

The computation of a machine in state g; with string w halts in state S(qi, w). The
evaluation of the function & (go. w) simulates the repeated applications of the transition
function required to process the string w. A string w is accepted if 5(gq, w) € F. Using this
notation, the language of a DFA M is the set L(M) = {w | §(qo, w) € F).

State Diagrams and Examples

The state diagram of a DFA is a labeled directed graph in which the nodes represent the
states of the machine and the arcs are obtained from the transition function. The graph in
Figure 5.1 is the state diagram for the newspaper vending machine DFA. Because of the
intuitive nature of the graphic representation, we will often present the state diagram rather
than the sets and transition function that constitute the formal definition of a DFA.

Definition 5.3.1
The state diagram of a DFAM = (Q, X, 8, gqq, F) is alabeled directed graph G defined
by the following conditions:
i) The nodes of G are the elements of Q.
ii) The labels on the arcs of G are elements of Z.
iii) g is the start node, which is depicted)O
iv) Fis the set of accepting nodes; each accepting node is depicted .
v) There is an arc from node g; to g; labeled a, if 8(g;, a) = g;-
vi) For every node ¢; and symbol a € X, there is exactly one arc labeled o leaving g;.

152 Chapter5 Finite Autornata

A transition of a DFA is represented by an arc in the state diagram. Tracing the
computation of a DFA in the corresponding state diagram constructs a path that begins
at node gg and “spells” the input string. Let p,, be a path beginning at g, that spells w,
and let g,, be the terminal node of p,,. Theorem 5.3.2 proves that there is only one such
path for every string w € £*. Moreover, g, is the state of the DFA upon completion of the
processing of w.

Theorem 5.3.2

LetM = (Q, X, 8, qo, F) be a DFA and let w € £*. Then w determines a unique path p,,
in the state diagram of M and 6(gq, w) = q,,.

Proof. The proof is by induction on the length of the string. If the length of w is zero, then
8(qo, A) = gg. The corresponding path is the null path that begins and terminates with gg.
Assume that the result holds for all strings of length » or less. Let w = ua be a string
of length n + 1. By the inductive hypothesis, there is a unique path p, that spells z and
8(qo, u) = g, The path p,, is constructed by following the arc labeled a from g,,. This is
the only path from gy that spells w since p, is the unique path that spells # and there is only
one arc leaving g,, labeled a. The terminal state of the path p,, is determined by the transition
8(q,, ‘i)' From the definition of the extended transition fupction, S(qo. w)=24 (3 (qu, u), a).
Since 8(qo, #) = gy, 4, = 8(qu, a) =8(5(qp, 1), @) = 8(qo, w) as desired. u

The equivalence of computations of a DFA and paths in the state diagram gives us a
heuristic method for determining the language of the DFA. The strings accepted in a state
q; are precisely those spelled by paths from g to g;. We can separate the determination of
these paths into two parts:

i) First, find regular expressions uy, . . ., &, for strings on all paths from g that reach g;
the first time.
ii) Find regular expressions vy, . . . , v, for all ways to leave g; and return to g;.

The strings accepted by g; are (uy U+ - Uu,)(vyU- - - Uyp)™
Consider the DFA

5.3 State Diagrams and Examples 153

The language of M consists of all strings spelled by paths from gy to either ¢, or ¢3. Using
the heuristic described previously, the strings on the paths to each of the accepting states are

State Pathstog; Simple Cycles from ¢; to g; Accepted Strings
q a b ab*
q; ab*aa*b, bb*a bb*a, aa*h (ab*aa U ba)(ab U ba)*

Consequently, LOM) = ab* U (ab*aa*b U bb*a)(aa™b U bb*a)*. After we have established
additional properties of finite-state computation, we will present an algorithm that automat-
ically produces a regular expression for the language of a finite automaton.

In the remainder of this section we examine a number of DFAs to help develop the
ability to design automata to check for patterns in strings. The types of conditions that
we will consider include the number of occurrences and the relative positions of specified
substrings. In addition, we establish the relationship between a DFA that accepts a language
L and one that accepts the complement of L.

Example 5.3.1
The state diagram of the DFA in Example 5.2.1 is

a,b

The states are used to record the number of consecutive b’s processed. The state g; is
entered when a substring bb is encountered. Once the machine enters g, the remainder of
the input is processed, leaving the state unchanged. The computation of the DFA with input
ababb and the corresponding path in the state diagram are

a

Computation Path

[gq, ababb] 90-
 [gq, babb] 40,

gy, abb] 9
- [qq. bb] 40,
+1q,, b] 9
F g2, A ')

The string ababb is accepted since the halting state of the computation, which is also the
terminal state of the path that spells ababb, is the accepting state g,. o

154 Chapter5 Finite Automata

Example 5.3.2
The DFA

accepts (b U ab)*(a U A), the set of strings over {a, b} that do not contain the substring aa.
u]

Example 5.3.3

Strings over {a, b) that contain the substring bb or do not contain the substring aa are
accepted by the DFA depicted below. This language is the union of the languages of the
previous examples.

The state diagrams for machines that accept the strings with substring bb or without
substring aa seem simple compared with the machine that accepts the union of those two
languages. There does not appear to be an intuitive way to combine the state diagrams of
the constituent DFAs to create the desired composite machine.

The next several examples provide a heuristic for designing DFAs. The first step is to
produce an interpretation for the states of the DFA. The interpretation of a state describes
properties of the string that has been processed when the machine is in the state. The
pertinent properties are determined by the conditions required for a string to be accepted.

Example 5.3.4

A successful computation of a DFA that accepts the strings over {u, b} containing the
substring aaa must process three a’s in a row. Four states are required to record the status of
a computation checking for aau. The interpretation of the states, along with state names, are

5.3 State Diagrams and Examples 155

State Interpretation

qo: No progress toward aaa

q; Last symbol processed was an a

! Last two symbols processed were aa
q5 aaa has been found in the string

Prior to reading the first symbol, no progress has been made toward finding aaa.
Consequently, this condition represents the start state.

Once the states are identified, it is frequently easy to determine the proper transitions.
When computation in state g; processes an a, the last two symbols read are aa and g; is
entered. On the other hand, if a b is read in g, the resulting string represents no progress
toward aaa and the computation enters g,. Following a similar strategy, the transitions can
be determined for all states producing the DFA

b ab
a a ~ a
b

On processing aaa, the computation enters g3, reads the remainder of the string, and accepts
the input.]

Example 5.3.5

Building a machine that accepts strings with exactly two a’s and an odd number of b's
requires checking two conditions: the number of a’s and the parity of the b’s. Seven states
are required to store the information needed about the string. The interpretation of the states
describes the number of a’s read and the parity of the string processed when the computation
is in the state.

State Interpretation

90" No a’s, even number of b’s
qr No a’s, odd number of b's
q>: One a, even number of b’s
q3: One a, odd number of b's
qy Two a’s, even number of b’s
gs: Two a’s, odd number of b’s

g More than two a’s

156 Chapter5 Finite Automata

At the beginning of a computation, no a’s and no 4’s have been processed and this becomes
the condition of the start state. A DFA accepting this language is

4 @)

The horizontal arcs count the number of a’s in the input string and the vertical pairs of
arcs record the parity of the b's. The accepting state is gs, since it represents the condition
required of a string in the language. o

Example 5.3.6
Let £ = {0, 1, 2, 3}. A string in £* is a sequence of integers from ¥. The DFA

M: Omod4)]

determines whether the sum of integers in an input string is divisible by four. For example,
the strings 1 2302 and 0] 3 0 are accepted and 0 I 1 I rejected by M. The states represent
the value of the sum of the processed input modulo 4. u]

Our definition of DFA allowed only two possible outputs, accept or reject. The defi-
nition of output can be extended to have a value associated with each state. The result of
a computation is the value associated with the state in which the computation terminates.
A machine of this type is called a Moore machine after E. F. Moore, who introduced this
type of finite-state computation. Associating the value i with the state imod4, the machine
in Example 5.3.6 acts as a modulo 4 adder.

The state diagrams for machines in Examples 5.3.1, 5.3.2, and 5.3.3 showed that there
is no simple method to obtain a DFA that accepts the union of two languages from DFAs

5.3 State Diagrams and Examples 157

that accept each of the languages. The next two examples show that this is not the case
for machines that accept complementary sets of strings. The state diagram for a DFA can
easily be transformed into the state diagram for another machine that accepts all, and only,
the strings rejected by the original DFA.

Example 5.3.7

The DFA M accepts the language consisting of all strings over {a, b} that contain an even
number of a's and an odd number of b’s.

At any step of the computation, there are four possibilities for the parities of the input
symbols processed: (1) even number of a’s and even number of b's, (2) even number of a’s
and odd number of b’s, (3) odd number of a’s and even number of b’s, (4) odd number of
a’s and odd number of »’s. These four states are represented by ordered pairs in which the
first component indicates the parity of the a’s and the second component, the parity of thc
b’s that have been processed. Processing a symbol changes one of the parities, designating
the appropriate transition. o

Example 5.3.8

Let M be the DFA constructed in Example 5.3.7. A DFA M’ is constructed that accepts all
strings over {a, b} that do not contain an even number of a’s and an odd number of 4’s. In
other words, L(M') = {a. b}* — L(M). Any string rejected by M is accepted by M’ and vice
versa. A state diagram for the machine M’ can be obtained from that of M by interchanging
the accepting and nonaccepting states.

158 Chapter5 Finite Automata

The preceding example shows the relationship between DFAs that accept complemen-
tary sets of strings. This relationship is formalized by the following result.

Theorem 5.3.3

LetM=(Q, X, 8, qo, F) be a DFA. Then M' =(Q, X, 5, go. Q — F) is a DFA with
L) = =% — L(M).

Proof. Letw € £* and 4 be the extended transition function constructed from 8. For each
w € L(M), 6(g, w) € F. Hence, w g L(M'). Conversely, if w ¢ L(M), then §(gp, w) €
Q—Fand w e LM).]

By definition, a DFA must process the entire input even if the result has already
been established. Example 5.3.9 exhibits a type of determinism, sometimes referred to as
incomplete determinism; each configuration has at most one action specified. The transitions
of such a machine are defined by a partial function from Q x X to Q. As soon as it is possible
to determine that a string is not acceptable, the computation halts. A computation that halts
before processing the entire input string rejects the input.

Example 5.3.9

The state diagram below defines an incompletely specified DFA that accepts (ab)*c.
A computation terminates unsuccessfully as soon as the input varies from the desired
pattern,

The computation with input abcc is rejected since the machine is unable to process the final
¢ from state g,. o

Two machines that accept the same language are called equivalent. An incompletely
specified DFA can easily be transformed into an equivalent DFA. The transformation
requires the addition of a nonaccepting “error” state. This state is entered whenever the
incompletely specified machine enters a configuration for which no action is indicated.
Upon entering the error state, the computation of the DFA reads the remainder of the string
and halts.

5.4 Nondeterministic Finite Automata 159

Example 5.3.10
The DFA

accepts the same language as the incompletely specified DFA in Example 5.3.9. The state
g, is the error state that ensures the processing of the entire string. o

Example 5.3.11
The incompletely specified DFA defined by the state diagram

b
b
*@A

accepts the language {a’b’ | i < n}, for a fixed integer n. The states labeled A; count the
number of a's, and then the B,’s ensure an equal number of »’s. This technique cannot
be extended to accept {a’b’ | i > 0} since an infinite number of states would be needed. In
the next chapter we will show that the language {a’b’ | i > 0} is not acccpted by any finite
automaton. [m]

@Nondeterministic Finite Automata

We now alter our definition of machine to allow nondeterministic computations. In a non-
deterministic automaton there may be several instructions that can be executed from a
given machine configuration. Although this property may seem unnatural for comput-
ing machines, the flexibility of nondeterminism often facilitates the design of language
acceptors.

160 Chapter5 Finite Automata

A transition in a nondeterministic finite automaton (NFA) has the same effect as one
in a DFA: to change the state of the machine based upon the current state and the symbol
being scanned. The transition function must specify all possible states that the machine
may enter from a given machine configuration. This is accomplished by having the value
of the transition function be a set of states. The graphic representation of state diagrams is
used to illustrate the alternatives that can occur in nondeterministic computation. Any finite
number of transitions may be specified for a given state ¢, and symbol a. The value of the
nondeterministic transition function is given below the corresponding diagram.

D
G —®
@)

3(g,,a) = {q,) 8(q, =14, 9, 9} 8(g,,a)=0

Because nondeterministic computation differs significantly from its deterministic coun-
terpart, we begin the presentation of nondeterministic machines with an example that
demonstrates the fundamental differences between the two computational paradigms. In
addition, we use the example to introduce the features of nondeterministic computation and
to present an intuitive interpretation of nondeterminism.

Consider the DFA M,

that accepts (a U b)*abba(a U b)*, the strings over {a, b} that contain the substring abba.
The states gg, 41, 2. q3 Tecord the progress toward obtaining the substring abba. The states
of the machine are

State Interpretation

q0: When there is no progress toward abba
q; When the last symbol processed was an a
qs: When the last two symbols processed were ab

qs: When the last three symbols proccssed were abb

5.4 Nondeterministic Finite Automata 161

Upon processing abba, state g, is entered, the remainder of the string is read, and the input
is accepted.

The deterministic computation must “back up” in the sequence gy, 4;, 47, 43 When the
current substring is discovered not to have the desired form. If a b is scanned when the
machine is in state g3, then g is entered since the last four symbols processed are abbb and
the current configuration represents no progress toward finding abba.

A nondeterministic approach to accepting (a U b)*abba(a U b)* is illustrated by the
machine

a,b a,b

L)) b . L9
M Xag——=@) @) (@)
There are two possible transitions when M, processes an « in state g,. One possibility is
for M, to continue reading the string in state gy. The second option enters the sequence of
states g, ¢,, g3 to check if the next three symbols complete the substring abba.
The first thing to observe is that with a nondeterministic machine, there may be multiple

computations for an input string. For example, M, has five different computations for string
aabbaa. We will trace the computations using the - notation introduced in Section 5.2.

[qo. aubbaal [gy, aabbaal g0, aabbaa) [q0. aabbaa) [go. aabbaa]l
F[qo, abbaa) - [gy, abbaal) + [qo, abbaa] t[qo, abbaal [, abbaa]l
- [go, bbaal - [g9, bbaa] - [qq, bbaal - [g1. bbaa)l

F[gy, baal F[go, baal [go. baul + [g5. baal
+ [q()’ aa] (g [40. aa] + [qO' aa] F [qJ' aa]
g, al g0, al Flq1. a] g4, al
Flgo. Al Flgn Al il 7

What does it mean for a string to be accepted when there are some computations that halt
in an accepting statc and others that halt in a rejecting state? The answer lies in the use
of the word check in the preceding paragraph. An NFA is designed to check whether a
condition is satisfied, in this case, whether the input string has a substring abba. If one of
the computations discovers the presence of the substring, the condition is satisfied and the
string is accepted. As with incompletely specified DFAs, it is necessary to read the entire
string to receive an affirmative answer. Summing up, a string is accepted by an NFA if there
is at least one computation that

i) processes the entire string, and
ii) halts in an accepting state.

A string is in the language of a nondeterministic machine if there is a computation that
accepts it; the existence of other computations that do not accept the string is irrelevant.

162 Chapter5 Finite Automata

Nondeterministic machines are frequently designed to employ a “guess and check”
strategy. The transition from g to ¢, in M, represents the guess that the a being read is the
first symbol in the substring abba. After the guess, the computation continues to states ¢,
q,, and g5 to check whether the guess is correct. If symbols following the guess are bba,
the string is accepted.

If an input string has the substring abba, one of the guesses will cause M, to enter
state ¢, upon reading the initial a in the substring, and this computation accepts the string.
Moreover, M, enters g4 only upon processing abba. Consequently, the language of M, is
(a U b)*abba(a U b)*. It should be noted that accepting computations are not necessarily
unique; there are two distinct accepting computations for abbabba in M,.

If this is your first encounter with nondeterminism, it is reasonable to ask about the
ability of a machine to perform this type of computation. DFAs can be easily implemented
in either software or hardware. What is the analogous implementation for NFAs? We can
intuitively imagine nondeterministic computation as a type of multiprocessing. When the
computation enters a machine configuration for which there are multiple transitions, a new
process is generated for each alternative. With this interpretation, a computation produces
a tree of processes running in parallel with the branching generated by the multiple choices
in the NFA. The tree corresponding to the computation of aabbaa is

5.4 Nondeterministic Finite Automata 163

If one of the branches reads the entire string and halts in an accepting state, the input is
accepted and the entire computation terminates. The input is rejected only when all branches
terminate without accepting the string.

Having introduced the properties of nondeterministic computation in the preceding
example, we now present the formal definitions of nondeterministic machines, their state
diagrams, and their languages. With the exception of the transition function, the components
of an NFA are identical to those of a DFA.

Definition 5.4.1

A nondeterministic finite automaton (NFA) is a quintuple M = (Q, X, §, ¢y, F), where
Qis afinite set of states, X afinite set called the alphabet, g, € Q a distinguished state known
as the start state, F a subset of Q called the final or accepting states, and § a total function
from Q x T to P(Q) known as the transition function.

Definition 5.4.2

The language of an NFA M, denoted L(M), is the set of strings accepted by the M. That is,
L(M) = {w | there is a computation [¢;, w] [¢;, A]withgq; € F}.

Definition 5.4.3

The state diagram of an NFAM = (Q, X, 8, gg. F)isalabeled directed graph G defined
by the following conditions:

i) The nodes of G are elements of Q.
ii) The labels on the arcs of G are elements of .
iti) gq is the start node.
iv) F is the set of accepting nodes.
v) There is an arc from node g; to g; labeled a, if g; € 3(g;, a).

The relationship between DFAs and NFAs is clearly exhibited by comparing the prop-
erties of the corresponding state diagrams. Definition 5.4.3 is obtained from Definition 5.3.1
by omitting condition (vi), which translates the deterministic property of the DFA transition
fanction into its graphic representation.

The relationship between DFAs and NFAs can be summarized by the seemingly para-
doxical phrase, “Every deterministic finite automaton is nondeterministic.” The transition
function of a DFA specifies exactly one transition for each combination of state and input
svmbol, while an NFA allows zero, one, or more transitions. By interpreting the transition
function of a DFA as a function from Q x X to singleton sets of states, the family of DFAs
may be considered to be a subset of the family of NFAs.

The following example describes an NFA in terms of the components in the formal
definition. We then construct the corresponding state diagram using the technique outlined
m Definition 5.4.3.

164 Chapter5 Finite Automata

Example 5.4.1
The NFA
M:Q={g.q1.92t & |a b
Z ={a, b} 9 | fao} {90 a1}
F = {g2) a8 o
q2 1] 7

with start state g accepts the language (@ U b)*bb. The state diagram of M is

ab

@ ——@)—>

Pictorially, it is clear that a string is accepted if, and only if, it ends with the substring bb.
As noted previously, an NFA may have multiple computations for an input string. The
three computations for the string ababb are

[go, ababb] [go. ababb] [go. ababb]
(g0, babb] +[gq, babb] + [g0, babb]
+ g0, abb] (g1, abb] F [0, abb]
g0, bb] F 40, bb]

F g0, b] g, bl
g0, A] g2, Al

The second computation halts after the execution of three instructions since no action is
specified when the machine is in state g, scanning an a. The first computation processes the
entire input and halts in a rejecting state while the final computation halts in an accepting
state. The third computation demonstrates that ababb is in the language of machine M. 0O

Example 5.4.2
The state diagrams M, and M, define finite automata that accept (a U b)*bb(a U b)*.
a,b

C)
Mlzb @@

a
ab ab

M, ’ b . b ;

55 A-Transitions 165

M, is the DFA from Example 5.3.1. The path exhibiting the acceptance of strings by M,
enters ¢, when the first substring bb is encountered. M, can enter the accepting state upon
processing any occurrence of bb. a]

Example 5.4.3

An NFA that accepts strings over {a, b} with the substring aa or bb can be constructed by
combining a machine that accepts strings with bb (Example 5.4.2) with a similar machine
that accepts strings with aa.

A path exhibiting the acceptance of a string reads the input in state ¢g until an occurrence
of the substring aa or bb is encountered. At this point, the path branches to either g, or g3,
depending upon the substring. There are three distinct paths that exhibit the acceptance of
the string abaaabb. o

The flexibility permitted by the use of nondeterminism does not always simplify the
problem of constructing a machine that accepts L(M;) U L(M,) from the machines M, and
M,. This can be seen by attempting to construct an NFA that accepts the language of the
DFA in Example 5.3.3.

A-Transitions

The transitions from state to state in both deterministic and nondeterministic automata were
mitiated by processing an input symbol. The definition of NFA is now relaxed to allow state
transitions without requiring input to be processed. A transition of this form is called a
»-transition. The class of nondeterministic machines that utilize A-transitions is denoted
NFA-A.

The incorporation of A-transitions into finite state machines represents another step
away from the deterministic computations of a DFA. They do, however, provide a useful
too] for the design of machines to accept complex languages.

166 Chapter5 Finite Automata

Definition 5.5.1

A nondeterministic finite automaton with A-transitions is a quintuple M = (Q, X,
8, qp, F), where Q, 8, gp, and F are the same as in an NFA. The transition function is
a function from Q x (T U {A}) to P(Q).

The definition of halting must be extended to include the possibility that a computation
may continue using A-transitions after the input string has been completely processed.
Employing the criteria used for acceptance in an NFA, the input is accepted if there is a
computation that processes the entire string and halts in an accepting state. As before, the
language of an NFA-A is denoted L(M). The state diagram for an NFA-A is constructed
according to Definition 5.4.3 with A-transitions represented by arcs labeled by A.

The ability to move between states without processing an input symbol can be used to
construct complex machines from simpler machines. Let M, and M, be the machines

M, M

that accept (@ U b)*bb(a U b)* and (b U ab)*(a U 1), respectively. Composite machines are
built by appropriately combining the state diagrams of M; and M,.

Example 5.5.1
The language of the NFA-A M is L(M;) U L(M5).

A computation in the composite machine M begins by following a A-arc to the start state of
either M; or M. If the path p exhibits the acceptance of a string by machine M;, then that
string is accepted by the path in M consisting of the A-arc from g to g; o followed by p in
the copy of the machine M;. Since the initial move in each computation does not process an
input symbol, the language of M is L(M,) U L(M,). Compare the simplicity of the machine
obtained by this construction with that of the deterministic state diagram in Example 5.3.3.

o

5.5 A-Transitons 167

Example 5.5.2

An NFA-A that accepts L(M;)L(M,), the concatenation of the languages of M; and M,, is
constructed by joining the two machines with a A-arc.

ab ab b

=)~
An input string is accepted only if it consists of a string from L(M,) concatenated with one

from L(M,). The A-transition allows the computation to enter M, whenever a prefix of the
mput string is accepted by M;. [s]

Example 5.5.3

We will use A-transitions to construct an NFA-A that accepts all strings of even length over
{a. b}. We begin by building the state diagram of a machine that accepts strings of length
wo.

ab a b

To accept the null string, a A-arc is added from g; to g;. Strings of any positive, even length
are accepted by following the A-arc from g, to g to repeat the sequence gy, ¢y, ¢3.

The constructions presented in Examples 5.5.1, 5.5.2, and 5.5.3 can be generalized
to construct machines that accept the union, concatenation, and Kleene star of languages
accepted by existing finite-state machines. The first step is to transform the machines into
an equivalent NFA-A whose form is amenable to these constructions.

Lemma 5.5.2
Let M= (Q, X, 3, g5, F) be an NFA-A. There is an equivalent NFA-A M’ = (QU
{ag @ iz, &, q('), {g¢}) that satisfies the following conditions:
i) The in-degree of the start state g, is zero.
ii) The only accepting state of M’ is ¢ .
iii) The out-degree of the accepting state g is zero.

168 Chapter5 Finite Automata

Proof. The transition function of M’ is constructed from that of M by adding the A-
transitions

8(gg A) = {g0}
8(gi» A) ={gs} forevery q; € F

for the new states ¢; and g ;. The A-transition from g, to gy permits the computation to
proceed to the original machine M without affecting the input. A computation of M’ that
accepts an input string is identical to that of M followed by a A-transition from the accepting
state of M to the accepting state g, of M. [

If a machine satisfies the conditions of Lemma 5.5.2, the sole role of the start state is
to initiate a computation, and the computation terminates as soon as g ¢ is entered. Such a
machine can be pictured as

X—— M —()

The diagram depicts a machine with three distinct parts: the initial state, the body of the
machine, and the final state. This can be likened to a railroad car with couplers on either
end. Indeed, the conditions on the start and final state are designed to allow them to act as
couplers of finite-state machines.

Theorem 5.5.3
Let M; and M, be two NFA-As. There are NFA-As that accept L(M;) UL(M,),
L(MpL(M;), and L(M,)*.

Proof. We assume, without loss of generality, that M; and M, satisfy the conditions
of Lemma 5.5.2. The machines constructed to accept the languages L(M;) UL(M,),
L(M;)L(M,), and L(M,)* will also satisfy the conditions of Lemma 5.5.2.

Because of the restrictions on the start and final states, M; and M, may be depicted

gy ™
e)—= ™

5.5 A-Transitions 169

The language L(M;) U L(M,) is accepted by

A computation begins by following a A-arc to M, or M,. If the string is accepied by either
of these machines, the A-arc can be traversed to reach the accepting state of the composite
machine. This construction may be thought of as building a machine that runs M; and M,
in parallel. The input is accepted if either of the machines successfully processes the string.

Concatenation can be obtained by operating the component machines sequentially. The
start state of the composite machine is g, o and the accepting state is g, ;. The machines
are joined by connecting the final state of M, to the start state of M.

g— M W ™

When a prefix of the input string is accepted by M, the computation continues with M,.
If the remainder of the string is accepted by M, the processing terminates in ¢, . the
accepting state of the composite machine.

A machine that accepts L(M,)* must be able to cycle through M, any number of times.
The A-arc from g, f to gy o permits the necessary cycling. Another A-arc is added from q; o
10 q; ¢ to accept the null string. These arcs are added to M producing

The ability to repeatedly connect machines of this form will be used in Chapter 6 to
sstablish the equivalence of languages described by regular expressions and accepted by
finite-state machines.

170 ChapterS Finite Automata

Removing Nondeterminism

Three classes of finite automnata have been introduced in the previous sections, each class
being a generalization of its predecessor. By relaxing the deterministic restriction, have we
created a more powerful class of machines? More precisely, is there a language accepted by
an NFA that is not accepted by any DFA? We will show that this is not the case. Moreover,
an algorithm is presented that converts an NFA-A to an equivalent DFA.

The state transitions in DFAs and NFAs accompanied the processing of an input symbol.
Torelate the transitions in an NFA-A to the processing of input, we build a modified transition
function #, called the input transition function, whose value is the set of states that can be
entered by processing a single input symbol from a given state. The value of 7(g;, a) for
the diagram in Figure 5.3 is the set {g,, g3. ¢5, g¢}. State g, is omitted since the transition
from state g, does not process an input symbol.

Intuitively, the definition of the input transition function #(g;, a) can be broken into
three parts. First, the set of states that can be reached from g; without processing a symbol
is constructed. This is followed by processing an a from all the states in that set. Finally,
following A-arcs from the resulting states yields the set t(g;, a).

The function ¢ is defined in terms of the transition function § and the paths in the state
diagram that spell the null string. A node g; is said to be in the A-closure of g; if there is a
path from g; to g; that spells the null string.

Definition 5.6.1
The A-closure of a state g;, denoted A-closure(q;), is defined recursively by

i) Basis: g; € A-closure(g;).
ii) Recursive step: Let g; be an element of A-closure(g;). If g; € 8(g;. 1), then g; €
A-closure(g;).

iii) Closure: g, is in A-closure(g;) only if it can be obtained from ¢; by a finite number of
applications of the recursive step.

The set A-closure(g;) can be constructed following the top-down approach used in
Algorithm 4.3.1, which determined the chains in a context-free grammar. The input transi-
tion function is obtained from the A-closure of the states and the transition function of the
NFA-A.

Definition 5.6.2

The input transition function ¢ of an NFA-A M is a function from Q x X to P(Q) defined
by

t(g;, a) = U A-closure(8(q;, a)),
qj€A-closure(g;)

where § is the transition function of M.

5.6 Removing Nondeterminism 171

String
Path Processed
41 92 a
41 92, 93 a
41, 94 A
g1, 94, 95 a
q1s 94, 95 96 a

FIGURE 5.3 Paths with A-transitions.

The input transition function has the same form as the transition function of an NFA.
That is, it is a function from Q x X to sets of states. For an NFA without A-transitions, the
input transition function 7 is identical to the transition function § of the automaton.

Example 5.6.1

Transition tables are given for the transition function & and the input transition function ¢
of the NFA-A with state diagram M. The language of M is at¢*b*.

é a b c A
b
9 | lg0g9) 0 f]
M:) q | 9)} @ 0
9 |92 7 {2} {a:}
t a b c
49 | g0 qua) 9 2
gy 0 {1} [
9 | @ @t (g1, 92} o

The input transition function of an NFA-A is used to construct an equivalent DFA.
Acceptance in a nondeterministic machine is determined by the existence of a computation
that processes the entire string and halts in an accepting state. There may be several paths
in the state diagram of an NFA-A that represent the processing of an input string, while the
state diagram of a DFA contains exactly one such path. To remove the nondeterminism, the
DFA must simulate the simultaneous exploration of all possible computations in the NFA-A.

Algorithm 5.6.3 iteratively builds the state diagram of a deterministic machine equiv-
alent 1o an NFA-A M. The nodes of the DFA, called DM for deterministic equivalent of M,
are sets of nodes of M. The start node of DM is the A-closure of the start node of M. The key
to the algorithm is step 2.1.1, which generates the nodes of the deterministic machine. If X
is a node in DM, the set Y is constructed that contains all the states that can be entered by
processing the symbol a from any state in the set X. This relationship is represented in the
state diagram of DM by an arc from X to Y labeled a. The node X is made deterministic by

172 ChapterS Finite Automata

producing an arc from it for every symbol in the alphabet. New nodes generated in step 2.1.1
are added to the set Q' and the process continues until every node in Q' is deterministic.

Algorithm 5.6.3
Construction of DM, a DFA Equivalent to NFA-A M

input: an NFA-A M = (Q, X, §, gg, F)
input transition function ¢ of M

1. initialize Q' to A-closure(gg)
2. repeat
2.1. if there is a node X € Q' and a symbol @ € T with no arc
leaving X labeled a, then

211 letY= | Jt(g;. @)

eX
212 if Y ¢ Q. then set @ := Q' U {Y}
2.1.3. add an arc from X to Y labeled a
else done := true
until done
3. the set of accepting states of DM is F' = {X € Q' | X contains an element ¢; € F)

The NFA-) from Example 5.6.1 is used to illustrate the construction of nodes for the
equivalent DFA. The start node of DM is the singleton set containing the start node of M.
A transition from gg processing an a can terminate in gg, ¢;, or g,. We construct a node
{90, 1. g2} for the DFA and connect it to {¢5} by an arc labeled a. The path from {gg} to
{q0, 41, g2} in DM represents the three possible ways of processing the symbol a from state
90 in M.

Since DM is to be deterministic, the node {go} must have arcs labeled b and ¢ leaving
it. Arcs from g to () labeled b and ¢ are added to indicate that there is no action specified
by the NFA-2 when the machine is in state gg scanning these symbols.

The node {gp} has the deterministic form; there is exactly one arc leaving it for
every member of the alphabet. Figure 5.4(a) shows DM at this stage of its construction.
Two additional nodes, {¢g, 9;. g2} and @, have been created. Both of these must be made
deterministic.

An arc leaving node {gg, 4, >} terminates in a node consisting of all the states that
can be reached by processing the input symbol from the states gy, g, or ¢, in M. The
input transition function #(g;, a) specifies the states reachable by processing an a from
g;. The arc from {q, ¢;; g} labeled a terminates in the set consisting of the union of the
t(q0. a). t(q), a), and t(g,, a). The set obtained from this union is again {gg, 4;. g2}. An
arc from {qy, g1, g3} to itself is added to the diagram designating this transition.

The empty set represents an error state for DM. A computation enters @ on reading an
a in state Y only if there is no transition for a for any ¢; € Y. Once in @, the computation

56 Removing Nondeterminism 173

(@) (b)

FIGURE 5.4 Construction of equivalent deterministic automaton.

processes the remainder of the input and rejects the string. This is indicated in the state
diagram by the arc from # to itself labeled by each alphabet symbol.

Figure 5.4(b) gives the completed deterministic equivalent of the M. Computations
of the nondeterministic machine with input aaa can terminate in state gy, ¢, and g,. The
acceptance of the string is exhibited by the path that terminates in g,. Processing aaa in DM
terminates in state {qq, g1, ¢>}. This state is accepting in DM since it contains the accepting
state ¢, of M.

The algorithm for constructing the deterministic state diagram consists of repeatedly
adding arcs to make the nodes in the diagram deterministic. As arcs are constructed, new
nodes may be created and added to the diagram. The procedure terminates when all the
nodes are deterministic. Since each node is a subset of Q, at most card (P(Q)) nodes can
be constructed. Algorithm 5.6.3 always terminates since card(P(Q))card(X) is an upper
bound on the number of iterations of the repeat-until loop. Theorem 5.6.4 establishes the
equivalence of M and DM.

174 Chapter5 Finite Automata

Theorem 5.6.4

Letw € ¥ and Qy = {qu)s Guys - - - » Gu ,] be the set of states entered upon the completion
of the processing of the string w in M. Processing w in DM terminates in state Q,,.

Proof. The proof is by induction on the length of the string w. A computation of M that
processes the empty string terminates at a node in A-closure(gy). This set is the start state
of DM.

Assume the property holds for all strings of length » and let w = ua be a string of length
n+ 1.LetQ, ={qy,, qu,. - - - 9.,) be the terminal states of the paths obtained by processing
the entire string u in M. By the inductive hypothesis, processing # in DM terminates in Q,,.
Computations processing #a in M terminate in states that can be reached by processing an
a from a state in Q,,. This set, Q,,, can be defined using the input transition function:

k
Qw = U r(qu," a)’
i=1
This completes the proof since Q,, is the state entered by processing a from state Q, of DM.
n

The acceptance of a string in a nondeterministic automaton depends upon the existence
of one computation that processes the entire string and terminates in an accepting state. The
node Q,, contains the terminal states of all the paths generated by computations in M that
process w. If w is accepted by M, then Q,, contains an accepting state of M. The presence
of an accepting node makes Q,, an accepting state of DM and, by the previous theorem, w
is accepted by DM.

Conversely, let w be a string accepted by DM. Then Q,, contains an accepting state of
M. The construction of Q,, guarantees the existence of a computation in M that processes
w and terminates in that accepting state. These observations provide the justification for
Corollary 5.6.5.

Corollary 5.6.5
The finite automata M and DM are equivalent.

Example 5.6.2
The NFA

M:a@bb@

accepts the language a*b™. The construction of an equivalent DFA is traced in the following
table.

5.6 Removing Nondeterminism

State Symbol NFA Transitions Next State

{g0} a 8(qn, a)={g0: 9} {90, 91}

{g0} b 8(qg,) =1)

go. 1} a 8(q0. a) =1{90. 91} {490, 91}
8(ql’ a)=]

lgo. 1} & (g, b) =1 {91, 92}
8(q1, b) = {q1, 92}

{q1.92} @ 8(q,a)=9]
8(gr,a) =10

1.2} b 8(q), D)={q91, 2} g1 2}
8(q2, b) =9

175

Since M is an NFA, the transition function § of M serves as the input transition function
and the start state of the equivalent DFA is {gy}. The resulting DFA is

Example 5.6.3

As seen in the preceding examples, the states of the DFA constructed using Algorithm 5.6.3
are sets of states of the original nondeterministic machine. If the nondeterministic machine
has n states, the DFA may have 2” states. The transformation of the NFA

176 Chapter5 Finite Automata

shows that the theoretical upper bound on the number of states may be attained. The start
state of DM is {gg} since M does not have A-transitions.

Example 5.6.4
The machines M; and M, accept a(ba)* and a*, respectively.

a

. C)
M @ > M,

Using A-arcs to connect a new start state to the start states of the original machines creates
an NFA-A M that accepts a(ba)* U g*.

A
M:la

5.6 Removing Nondeterminism 177

The input transition function for M is

t|a b

q0 {q2$ ‘I3}]

a | g2} 9
g | 9 (g1}
a | g3]

The equivalent DFA obtained from Algorithm 5.6.3 is

Algorithm 5.6.3 completes the following cycle describing the relationships between
the classes of finite automata.

NFA -4

DFA
NFA

The arrows represent inclusion; every DFA can be reformulated as an NFA that is, in turn,
an NFA-A. The double arrow from NFA-A to DFA indicates the existence of an equivalent
deterministic machine.

178 ChapterS Finite Automata

DFA Minimization

The preceding sections established that the family of languages accepted by DFAs is the
same as that accepted by NFAs and NFA-As. The flexibility of nondeterminism and A-
transitions aid in the design of machines to accept complex langnages. The nondeterministic
machine can then be transformed into an equivalent deterministic machine using Algorithm
5.6.3. The resulting DFA, however, may not be the minimal DFA that accepts the language.
This section presents a reduction algorithm that produces the minimal state DFA accepting
the language L from any DFA that accepts L. To accomplish the reduction, the notion of
equivalent states in a DFA is introduced.

Definition 5.7.1
LetM=(Q, I, 8, gg, F) be a DFA. States g; and g; are equivalent ifg(qi, u) € F if, and
only if, S(qj, u) € F for every u € T*.

Two states that are equivalent are called indistinguishable. The binary relation over
Q defined by indistinguishability of states is an equivalence relation; that is, the relation
is reflexive, symmetric, and transitive. Two states that are not equivalent are said to be
distinquishable. States g; and g ; are distinguishable if there is a string « such that S(q,-, u) €
Fand § (g;, u) ¢ F, or vice versa.

The motivation behind this definition of equivalence is illustrated by the following
states and transitions:

, a,b
a.b

ab

The unlabeled dotted lines entering g; and g; indicate that the method of reaching a
state is irrelevant; equivalence depends only upon computations from the state. The states
g; and g; are equivalent since the computation with any string beginning with b from either
state halts in an accepting state and all other computations halt in the nonaccepting state g;.
States g,, and g,, are also equivalent; all computations beginning in these states end in an
accepting state.

The intuition behind the transformation is that equivalent states may be merged. Ap-
plying this to the preceding example yields

5.7 DFA Minimization 179

To reduce the size of a DFA M by merging states, a procedure for identifying equivalent
states must be developed. In the algorithm to accomplish this, each pair of states g; and
4j, i < j, has associated with it values D[, j] and S[i, j]. D[i, j]is set to 1 when it is
determined that the states g; and g; are distinguishable. S[m, n] contains a set of indices.
Index [i, j]is in the set S[m, n] if the distinguishability of ¢; and ¢; follows from that of
4m and g,,.

The algorithm begins by marking each pair of states g; and ¢; as distinguishable if
one is accepting and the other is rejecting. The remainder of the algorithm systematically
examines cach nonmarked pair of states. When two states are shown to be distinguishable, a
call to arecursive routine DIST sets D[i, j]to 1. The call DIST (i, j) not only marks g; and
q; as distinguishable, it also marks each pair of states g,, and g,, for which [m, n] € S[i, j]
as distinguishable through a call to DIST (m, n).

Algorithm 5.7.2
Determination of Equivalent States of DFA

input: DFAM = (Q, X, 8, ¢3. F)

1. (Initialization)
for every pair of states ¢; and ¢;, i < j, do

1.1. D[i, j1:=0
1.2. S[i, j1:=0
end for

[35]

. for every pair i, j, i < j, if one of g; or g; is an accepting state and the other is
not an accepting state, then set D[i, j]:=1
3. for every pair i, j, i < j, with D[i, j]1=0, do
3.1. if there exists an a € T such that 8(g;, a) = g4, 8(q;, a) = g, and
D[m, n]=1or D[n, m] =1, then DIST (i, j)
3.2. else forcacha € I, do: Let 8(q;,) = g,, and 8(q;, @) =g,
if m <nand[i, j]# [m, n], then add [i, j]to S[m, n]
else if m > n and [i, j]+# [n, m], then add [i, j]to S[n, m]
end for

DIST(, j);
begin

D[i, j1:=1

for all [, n] € S[i, j1, DIST (m, n)
end

180 Chapter5 Finite Automata

The motivation behind the identification of distinguishable states is illustrated by the
relationships in the diagram

If g,, and g, are already marked as distinguishable when g; and g; are examined in step 3,
then D[i, j]is set to 1 to indicate the distinguishability of ¢; and ¢;. If the status of g,,
and g, is not known when g; and g; are examined, then a later determination that g,, and
g, are distinguishable also provides the answer for g; and g ;. The role of the array S is to
record this information: [i, j] € S[r, m] indicates that the distinguishability of 4,, and g, is
sufficient to establish the distinguishability of g; and g;. These ideas are formalized in the
proof of Theorem 5.7.3.

Theorem 5.7.3

States ¢; and g; are distinguishable if, and only if, D[i, j1=1 at the termination of
Algorithm 5.7.2.

Proof. First we show that every pair of states ¢; and ¢; for which D[i, j]=1is distin-
guishable. If D[i, j]is assigned 1 in the step 2, then g; and g; are distinguishable by the null
string. Step 3.1 marks ¢; and ¢ as distinguishable only if 8(g;, @) = g,, and 8(q;, a) =g,
for some input a when states g,, and g, have already been determined to be distinguishable
by the algorithm. Let u be a string that exhibits the distinguishability of g,, and g,,. Then
au exhibits the distinguishability of ¢; and g;.

To complete the proof, it is necessary to show that every pair of distinguishable states
is designated as such. The proof is by induction on the length of the shortest string that
demonstrates the distinguishability of a pair of states. The basis consists of all pairs of states
gi» q; that are distinguishable by a string of length 0. That is, the computations 5(q,~, A)=gq
and S(q j» &) = g; distinguish ¢; from g;. In this case, exactly one of g; or g, is accepting
and the position D[i, j]is setto 1 in step 2.

Now assume that every pair of states distinguishable by a string of length k or less is
marked by the algorithm. Let g; and g ; be states for which the shortest distinguishing string
u has lengtll k+1 Therl u canbe written av and the computations Yvith input # have the form
3(gi, u) =08(q;, av) = 8(q,, v) =g, and 8(q;, u) = 8(q;, av) = é(qy, v) = g,. Exactly one
of g, and g, is accepting since the preceding computations distinguish g; from g;. Clearly,
the same computations exhibit the distinguishability of g,, from ¢,, by a string of length %.
By induction, we know that the algorithm will set D[, n]to 1.

If D[m, n] is marked before the states g; and ¢; are examined in step 3, then D[i, j]
is set to 1 by the call DIST (i, j). If g; and q; are examined in the loop in step 3.1 and
D[m, n] # 1at that time, then [/, j]is added to the set S[m, n]. By the inductive hypothesis,
D[m, n] will eventually be set to 1. D[i, j] will also be set to 1 at this time by a recursive
call from DIST (m, n) since [i, j]lisin S[m, n]. []

5.7 DFA Minimization 181

A new DFA M’ can be built from the original DFA M= (Q, £, 8, ¢o. F) and the
indistinguishability relation. The states of M’ are the equivalence classes consisting of
indistinguishable states of M. The start state is [gg], and [g;] is a final state if g; € F.
The transition function 8’ of M’ is defined by 8'([g;], a) = [8(g;. a)). In Exercise 44, &’
is shown to be well defined. L(M’) consists of all strings whose computations have the form
3’([q0], w) =[5 (g;, »)] with g; € F. These are precisely the strings accepted by M. If M’ has
states that are unreachable by computations from [gg], these states and all associated arcs
are deleted.

Example 5.7.1

The minimization process is exhibited using the DFA M

that accepts the language (a U b)(a U b*).

Instep 2, D[0, 1], D[O, 2], D[O, 3], D[0, 4], D[0, 5], D[0, 6], D[1, 7], D[2, 7], D[3, 7],
D[4, 7], D[5, 7], and DI[6, 7] are set to 1. Each index not marked in step 2 is examined in
step 3. The table shows the action taken for each such index.

Index Action Reason
[0, 7] D[0,7]=1 Distinguished by a
[1, 2] D[1,2]=1 Distinguished by a
[1, 3] D[1,3]=1 Distinguished by a
[1,4] S[2, 51=([1, 41}

S[3. 6]=([1, 4]}
[1. 5] D[1,5]1=1 Distinguished by a
[1, 6] DI[1,6]=1 Distinguished by «
[2, 3] D[2,3]=1 Distinguished by b

(Continued)

182 Chapter5 Finite Automata

Index Action Reason

[2, 4] D[2,4]1=1 Distinguished by a

[2.5] No action since 8(g,, x) = 8(gs, x) foreveryx € T
[2, 6] D[2,6]=1 Distinguished by b

[3. 4] D[3,4]1=1 Distinguished by a

[3. 5] D[3,5]1=1 Distinguished by b

[3, 6]

[4, 5] D[4,5]1=1 Distinguished by a

[4, 6] D[4,6]=1 Distinguished by a

[5, 6] DI[5,6]=1 Distinguished by b

After each pair of indices is examined, [1, 4], [2, 5], and [3, 6] are left as equivalent
pairs of states. Merging thesc states produces the minimal state DFA M’ that accepts

(a U b)(a Ub").

Example 5.7.2

Minimizing the DFA M illustrates the recursive marking of states by the call to DIST. The
language of M is a(a U b)* U ba(a U b)* U bba(a U b)*.

Tracing the algorithm produces

@ b

a

@)t b@a.b

a a

’ ab @’ ab a,b

The comparison of accepting states to nonaccepting states assigns 1 to D[0, 4], D[0, 5],
DI0, 6], D[1, 4], D[1, 5], D[1, 6), D[2, 4], D[2, 5], D[2, 6], D[3, 4], D[3, 5}, and D[3, 6].

5.7 DFA Minimization 183

Index Action Reason
[0, 11 S[4, 51={[0. 11}
SI1, 21={[0, 1]}
[0. 2] S[4, 6] = {[0, 2]}
S[1, 31=1[0, 2]}
[0, 3] DI[0,3]1=1 Distinguished by a
(1. 2] SI5, 6] = {[1, 2]}
S12, 31={[1, 2]}
[1, 3] D[1,31=1 Distinguished by a
D[0,2]=1 Call to DIST(1, 3)
[2, 3] D[2,3]=1 Distinguished by a
D[2]=1 Call to DIST(1, 2)
D[0, 11=1 Call to DIST(0, 1)
[4, 5]
[4, 6]
[, 6]

Merging equivalent states g4, g5, and gg yields

@ b

ab

The minimization algorithm completes the sequence of algorithms required for the con-
struction of optimal DFAs, Nondeterminism and A-transitions provide taols for designing
finite automata to match complicated patterns or to accept complex languages. Algorithm
5.6.3 can then be used to transform the nondeterministic machine into a DFA, which may not
be minimal. Algorithm 5.7.2 completes the process by producing the minimal state DFA.

For the moment, we have presented an algorithm for DFA reduction but have not
established that it produces the minimal DFA. In Section 6.7 we prove the Myhill-Nerode
Theorem, which characterizes the language accepted by a finite automaton in terms of
equivalence classes of strings. This characterization will then be used to prove that the
machine M’ produced by Algorithm 5.7.2 is the unique minimal state DFA that accepts L.

184 Chapter5 Finite Automata

Exercises

1. Let M be the deterministic finite automaton defined by

Q=1{g0. 91, 92} & | a b

¥ ={a, b} % | 90 4@

F — {qz} 5] 92 q)
92 92 40

a) Give the state diagram of M.

b) Trace the computations of M that process the strings abaa, bbbabb, bababa, and
bbbaa.

¢) Which of the strings from part (b) are accepted by M?
d) Give a regular expression for L(M).
2. Let M be the deterministic finite automaton

Q=1{90, 91, 92}
X ={a, b}

F = {qp}

a) Give the state diagram of M.
b) Trace the computation of M that processes babaab.
¢) Give a regular expression for L(M).

d) Give a regular expression for the language accepted if both g, and ¢, are accepting
states.

3. Let M be the DFA with state diagram

a) Construct the transition table of M.
b) Which of the strings baba, baab, abab, abaaab are accepted by M?
c) Give a regular expression for L(M).

Exercises 185

* 4. Therecursive step in the definition of the extended transition function (Definition 5.2.4)
may bereplaced by &'(g;, au) = 8'(8(g;, a), u),forallu € £*,a € T, and g; € Q. Prove
that § = §'.

For Exercises 5 through 21, build a DFA that accepts the described language.
5. The set of strings over {a, b, ¢} in which all the a’s precede the b’s, which in turn
precede the ¢’s. It is possible that there are no a’s, b’s, or ¢’s.
. The set of strings over {a, b} in which the substring aa occurs at least twice.

6
7. The set of strings over {a, b} that do not begin with the substring ¢aa.
8. The set of strings over {a, b} that do not contain the substring aaa.

9

. The set of strings over {a, b, ¢} that begin with a, contain exactly two b's, and end with
cc.

10. The set of strings over {a, b, c} in which every b is immediately followed by at least
one c.

11. The set of strings over {a, b} in which the number of a’s is divisible by three.

12. The set of strings over {a, b} in which every a is either immediately preceded or
immediately followed by b, for example, baab, aba, and b.

13. The set of strings of odd length over {«, b} that contain the substring bb.
14, The set of strings over {a, b} that have odd length or end with aaa.
15. The set of strings of even length over {a, b, c} that contain cxactly one a.

16. The set of strings over {a, b} that have an odd number of occurrences of the substring
aa. Note that aaa has two occurrences of aa.

17. The set of strings over {a, b} that contain an even number of substrings ba.
18. The set of strings over {/, 2, 3} the sum of whose elements is divisible by six.

19. The set of strings over {a, b, ¢} in which the number of a’s plus the number of ’s plus
twice the number of ¢’s is divisible by six.

20. The set of strings over {a, b} in which every substring of length four has at least one b.
Note that every substring with length less than four is in this language.

= 21. The set of strings over {a, b, c} in which every substring of length four has exactly one
b.

22. For each of the following languages, give the state diagram of a DFA thal accepts the
languages.
a) (ab)*ba
b) (ab)*(ba)*
c) aa(@aUb)Tbb
d) ((aa)*bb)*
e) (ab*a)*

186 Chapter5 Finite Automata

23. Let M be the nondeterministic finite automaton

25.

a) Construct the transition table of M.

b) Trace all computations of the string aaabb in M.
¢) Is aaabb in LM)?

d) Give a regular expression for L(M).

. Let M be the nondeterministic finite automaton

a

(D@,

a) Construct the transition table of M.

b) Trace all computations of the string aabb in M.
¢) Is aabb in L(M)?

d) Give a regular expression for L(M).

e) Construct a DFA that accepts L(M).

f) Give a regular expression for the language accepted if both gy and g, are accepting
states.

For each of the following languages, give the state diagram of an NFA that accepts the
languages.

a) (a UabUaab)*

b) (ab)*Ua*

c) (abc)*a*

d) (ba Ubb)* U (abU aa)*

e) (abta)*

. Give arecursive definition of the extended transition function 8 of an NFA-A. The value

8(g;, w) is the set of states that can be reached by computations that begin at node g;
and completely process the string w.

Exercises 187

For Exercises 27 through 34, give the state diagram of an NFA that accepts the given
language. Remember that an NFA may be deterministic, but you should use nondeterminism
whenever it is appropriate.

27.
28.
29,
30.

31
32.

33.
34.

35.

36.

The set of strings over {a, b} that contain either aa and bb as substrings.
The set of strings over {a, b} that contain both or neither aa and bb as substrings.
The set of strings over {a, b} whose third-to-the-last symbol is b.

The set of strings over {a, b} whose third and third-to-last symbols are both b. For
example, agbabaa, abbbbbbbb, and abba are in the language.

The set of strings over {a, b} in which every a is followed by b or ab.

The set of strings over {a, b} that have a substring of length four that begins and ends
with the same symbol.

The set of strings over {a, b} that contain substrings aaa and bbb.

The set of strings over {a, b, ¢} that have a substring of length three containing each
of the symbols exactly once.

Construct the state diagram of a DFA that accepts the strings over {a, b} ending with
the substring abba. Give the state diagram of an NFA with six arcs that accepts the
same language.

Let M be the NFA-A

a c

a) Compute A-closure(q;) fori =0, 1, 2.

b) Give the input transition function ¢ for M.

c¢) Use Algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M.
d) Give a regular expression for L(M).

188 Chapter5 Finite Automata

37. Let M be the NFA-A

38.

39.

40.

@ Aa @

b a b
A

a

a

a) Compute A-closure(q;) fori =0, 1, 2, 3.

b) Give the input transition function for M.

c) Use Algorithm 5.6.3 to construct a state diagram of a DFA that is equivalent to M.
d) Give a regular expression for L(M).

Use Algorithm 5.6.3 to construct the state diagram of a DFA equivalent to the NFA in
Example 5.5.2.

Use Algorithm 5.6.3 to construct the state diagram of a DFA equivalent to the NFA in
Exercise 17.

For each of the following NFAs, use Algorithm 5.6.3 to construct the state diagram of
an equivalent DFA.
a) b b

b)

Exercises 189

d)

41. Build an NFA M, that accepts (ab)* and an NFA M, that accepts (ba)*. Use A-
transitions to obtain a machine M that accepts (ab)*(ba)*. Give the input transition
function of M. Use Algorithm 5.6.3 to construct the state diagram of a DFA that accepts
LM).

42. Build an NFA M, that accepts (aba)* and an NFA M, that accepts (ab)*. Use A-
transitions to obtain a machine M that accepts (aba)* U (ab)*. Give the input transition
function of M. Use Algorithm 5.6.3 to construct the state diagram of a DFA that accepts
LM).

43. Assume that g; and g; are equivalent states of a DFA M (as in Definition 5.7.1) and
8(gi, u) =g, andg(qj, u) =g, forastring u € X*. Prove that ¢,, and g,, are equivalent.

44, Show that the transition function 8’ obtained in the process of merging equivalent
states is well defined. That is, show that if g; and g; are states with [¢;]1=[g;], then
&([g;), a) =8'(g;), @) forevery a € X.

45. For each DFA:

i) Trace the actions of Algorithm 5.7.2 to determine the equivalent states of M. Give
the values of D[, j]and S[i, j] computed by the algorithm.

ii) Give the equivalence classes of states.
iii) Give the state diagram of the minimal state DFA that accepts L(M).

190 Chapter5 Finite Automata

a)

b)

©)

Bibliographic Notes

Alternative interpretations of the result of finite-state computations were studied in Mealy
[1955] and Moore [1956]. Transitions in Mealy machines are accompanied by the gener-
ation of output. A two-way automaton allows the tape head to move in both directions. A
proof that two-way and one-way automata accept the same languages can be found in Rabin
and Scott [1959] and Sheperdson [1959]. Nondeterministic finite automata were introduced
by Rabin and Scott [1959]. The algorithm for minimizing the number of states in a DFA
was presented in Nerode [1958]. The algorithm of Hopcroft [1971] increases the efficiency
of the minimization technique.

The theory and applications of finite automata are developed in greater depth in the
books by Minsky [1967]; Salomaa [1973]; Denning, Dennis, and Qualitz [1978]; and Bavel
[1983].

CHAP]:ER 6 :

Properties of Regular
Languages

Grammars were introduced as language generators, finite automata as language acceplors,
and regular expressions as pattern descriptors. This chapter develops the relationship be-
tween these three approaches to language definition and explores the limitations of finite
automata as language acceptors.

Finite-State Acceptance of Regular Languages

In this section we show that an NFA-A can be constructed to accept any regular language.
Regular sets arc built recursively from @, {A}, and singleton sets containing clements
from the alphabet by applications of union, concatenation, and the Kleene star operation
(Definition 2.3.2). The construction of an NFA-A that accepts a regular set can be obtained
following the steps of its recursive generation, but using state diagrams as the building
blocks rather than scts.

State diagrams for machines that accept @, {A}, and singleton scts {a} are

ORI O
@——~@
D,

191

192 Chapter 6 Properties of Regular Languages

Note that each of these machines satisfies the restrictions described in Lemma 5.5.2. That
is, the machines contain a single accepting state and there are no arcs entering the start state
or leaving the accepting state.

As shown in Theorem 5.5.3, A-transitions can be used to combine machines of this form
to produce machines that accept more complex languages. Using repeated applications of
these techniques, the construction of the regular expression from the basis elements can
be mimicked by the corresponding machine operations. This process is illustrated in the
following example.

Example 6.1.1

An NFA-A that accepts (g U b)*ba is constructed following the steps in the recursive
definition of the regular expression. The language accepted by each intermediate machine
is indicated by the regular expression above the state diagram.

O~0 O—0

6.2 Expression Graphs 193

(aub)* ba

Expression Graphs

The construction in the previous section demonstrates that every regular language is rec-
ognized by a finite automaton. We will now show that every language accepted by a finite
automaton is regular by constructing a regular expression for the language of the machine.
To accomplish this, we extend the notion of a state diagram.

Definition 6.2.1

An expression graph is a labeled directed graph in which the arcs are labeled by regular
expressions. An expression graph, like a state diagram, contains a distinguished start node
and a set of accepting nodes.

The state diagram of a finite automaton with alphabet T is a special case of an
expression graph; the labels consist of A and expressions corresponding to the elements of
T. Paths in expression graphs generate regular expressions. The language of an expression
graph is the union of the regular expressions along paths from the start node to an accepting
node. For example, the expression graphs

ab b*a ba ba bb
G g B =2
accept the languages (ab)*, (b*a)*(a U b)(ba)*, and (ba)*b*(bb U (a* (ba)*b*))*, respec-
tively.

Because of the simplicity of the graphs, the expressions for the languages accepted
by the previous examples were obvious. A procedure is developed to reduce an arbitrary
expression graph to an expression graph containing at most two nodes. The reduction is
accomplished by repeatedly removing nodes from the graph in a manner that preserves the
language of the graph.

The state diagram of a finite automaton may have any number of accepting states.
Each of these states exhibits the acceptance of a set of strings, the strings whose processing

194 Chapter6 Properties of Regular Languages

successfully terminates in the state. The language of the machine is the union of these sets.
By Lemma 5.5.2, we can convert an arbitrary finite automaton to an equivalent NFA-A
with a single accepting set. To simplify the generation of a regular expression from a finite
automaton, we will assume that the machine has only one accepting state.

The numbering of the states of the NFA-A will be used in the node deletion algorithm
to identify paths in the state diagram. The label of an arc from state g; to state g; is denoted
w; ;. If there is no arc from node g; to g;, w; ; = 0.

Algorithm 6.2.2
Construction of a Regular Expression from a Finite Automaton

input: state diagram G of a finite automaton with one accepting state

Let g be the start state and g, thc accepting state of G.
1. repeat
1.1. choose a node g; that is neither gg nor g,
1.2. delete the node g; from G according to the following procedure:
1.2.1 for every j, k not equal to i (this includes j = k) do
i) if w;;# 0, w,; ,# @ and w; ;= @, then add an arc
from node j to node k labeled w; ;w; x
i) if w;,;# @, w; ;7@ and w; ; # @, then add an arc from
node g; to node g, labeled w; ; (w; ;)*w; «
iii) if nodes ¢; and g, have arcs labeled wy, wo, . . . , w;
connecting them, then replace the arcs by a single
arc labeled w\Uw, U - - - U w;
122 remove the node g; and all arcs incident to it in G
until the only nodes in G are g and g,
2. determine the expression accepted by G

The deletion of node g; is accomplished by finding all paths g, g;, g, of length two
that have g; as the intermediate node. An arc from g; to gy is added, bypassing the node
g;. If there is no arc from g¢; to itself, thc new arc is labeled by the concatenation of the
expressions on each of the component arcs. If w, ;7 @, then the arc w; ; can be traversed
any number of times before following the arc from g; to g;. The label for the new arc is
w;;(w; ;)*w; ;. These graph transformations are illustrated as follows:

Wi, i

o=@
@ WiiWik =@ @ wj.i(wi.i)*wl.k4=®

Step 2 in the algorithm may appear to be begging the question; the objective of the entire
algorithm is to determine the expression accepted by G. After the node deletion process is

6.2 Expression Graphs 195

completed, the regular expression can easily be obtained from the resulting graph. The
reduced graph has at most two nodes, the start node and the accepting node. If these are the
same node, the reduced graph has the form

u

3

accepting u*. A graph with distinct start and accepting nodes reduces to

u w

=0

and accepts the expression ¥*v(w U xu*v)*. This expression may be simplified if any of
the arcs in the graph are labeled @.

Algorithm 6.2:2 can also be used to construct the language of a finite state machine
with multiple accepting states. For each accepting state, we can produce an expression for
the strings accepted by that state. The language of the machine is simply the union of the
regular expressions obtained for each accepting state.

Example 6.2.1

The reduction technique of Algorithm 6.2.2 is used to generate a regular expression for the
language of the NFA with state diagram

Deleting node g, yields

196 Chapter6 Properties of Regular Languages

The deletion of ¢, produced a second path from ¢ to gq, which is indicated by the union in
the expression on the arc from g3 to go. Removing ¢, produces

abb’a

with associated language (abb*a)*(b U bb)(a(abb*a)*(b U bb))*. a]

The results of the previous two sections yield a characterization of regular languages
originally established by Kleene. The construction outlined in Section 6.1 can be used to
build an NFA-A to accept any regular language. Conversely, Algorithm 6.2.2 produces a
regular expression for the language accepted by a finite automaton. Using the equivalence
of deterministic and nondeterministic machines, Kleene’s Theorem can be expressed in
terms of languages accepted by deterministic finite automata.

Theorem 6.2.3 (Kleene)

A language L is accepted by a DFA with alphabet X if, and only if, L is a regular language
over X.

Regular Grammars and Finite Automata

A context-free grammar is called regular (Section 3.3) if each rule is of the form A —
aB, A— a, or A— A. A string derivable in a regular grammar contains at most one
variable which, if present, occurs as the rightmost symbol. A derivation is terminated by
the application of a rule of the form A - cor A — A.

The language a*b™ is generated by the grammar G and accepted by the NFA M

G: S—>aS|aA a b

A—>bA|b . () . g s o)

where the states of M have been named S, A, and Z to simplify the comparison of com-
putation and generation. The computation of M that accepts aabb is given along with the
derivation that generates the string in G.

String
Derivation Computation Processed
S=as [S, aabbl - [S, abb) a
= aaA - [A, bb) aa
= aabA F[A, b] aab

= aabb FIZ, A] aabb

6.3 Regular Grammars and Finite Automata 197

A computation in an automaton begins with the input string, sequentially processes
the leftmost symbol, and halts when the entire string has been analyzed. Generation, on the
other hand, begins with the start symbol of the grammar and adds terminal symbols to the
prefix of the derived sentential form. The derivation terminates with the application of a
A-rule or a rule whose right-hand side is a single terminal.

The example illustrates the correspondence between generating a terminal string with
a regular grammar and processing the string by a computation of an automaton. The state
of the automaton is identical to the variable in the derived string. A computation terminates
when the entire string has been processed, and the result is designated by the final state.
The accepting state Z, which does not correspond to a variable in the grammar, is added to
M to represent the completion of the derivation of G.

The state diagram of an NFA M can be constructed directly from the rules of a grammar
G. The states of the automaton consist of the variables of the grammar and, possibly, an
additional accepting state. In the previous example, transitions (S, a) = S, 8(S. a) = A,
and 8(A, b) = A of M correspond to the rules S — aS, S —aA, and A — hA of G. The
left-hand side of the rule represents the current state of the machine. The terminal on the
right-hand side is the input symbol. The state corresponding to the variable on the right-hand
side of the rule is entered as a result of the transition.

Since the rule terminating a derivation does not add a variable to the siring, the
consequences of an application of a A-rule or a rule of the form A — a must be incorporated
into the construction of the corresponding automaton.

Theorem 6.3.1

Let G=(V, Z, P, §) be aregular grammar. Define the NFAM=(Q, Z, 4, S, F) as
follows:

| VU{Z} where Z €V,ifPcontainsarule A —a
i) Q= :
A% otherwise.

ii) 8(A, a) = B whenever A —» aB € P
8(A, a) = Z whenever A - a € P,

{A|A—=>AePlU{Z} ifZeQ
{A|A—AeP) otherwise.

Then L(M) = L(G).

Proof. The construction of the machine transitions from the rules of the grammar allows
every derivation of G to be traced by a computation in M. The derivation of a terminal
string has the form § = A, § = wC = wa, or § = wC = w where the derivation § = wC
consists of the application of rules of the form A — a B. Induction can be used to establish
the existence of a computation in M that processes the string w and terminates in state C
whenever wC is a sentential form of G (Exercise 6).

First we show that every string generated by G is accepted by M. If L(G) contains the
null string, then § is an accepting state of M and A € L(M). The derivation of a nonnull
string is terminated by the application of a rule C — a or C — A. In a derivation of the
form § = wC = wa, the final rule application corresponds 1o the transition §(C, a) = Z,

if) F={

198 Chapter 6 Properties of Regular Languages

causing the machine to halt in the accepting state Z. A derivation of the form S = wC = w
is terminated by the application of a A-rule. Since C — A is a rule of G, the state C is
accepting in M. The acceptance of w in M is exhibited by the computation that corresponds
to the derivation § = wC.

Conversely, we must show that L(M) € L(G). Let w = ua be a string accepted by M.
A computation accepting w has the form

[S, w]lk[B,A], where B#Z,
or
[S, wlk[A, al [Z, A).

In the former case, B is the left-hand side of a A-rule of G. The string w B can be derived by
applying the rules that correspond to transitions in the computation. The generation of w is
completed by the application of the A-rule. Similarly, a derivation of # A can be constructed
from the rules corresponding to the transitions in the computation [S, w] [[A, a]. The
string w is obtained by terminating this derivation with the rule A — a. Thus every string
accepted by M is in the language of G. [|

Example 6.3.1
The grammar G generates and the NFA M accepts the language a*(a U b).

a b
G: S—>aS|bB|a M: S b :%
B—bB|A a

The preceding transformation can be reversed to construct a regular grammar from
an NFA. The transition (A, a) = B produces the rule A — aB. Since every transition
results in a new machine state, no rules of the form A — @ are produced. The rules obtained
from the transitions generate derivations of the form § = wC that mimic computations in
the automaton. Rules must be added to terminate the derivations. When C is an accepting
state, a computation that terminates in state C exhibits the acceptance of w. Completing the
derivation S = wC with the application of a rule C — A generates w in G. The grammar
is completed by adding A-rules for all accepting states of the automaton. This informal
argument justifies Theorem 6.3.2. The formal proof is left as an exercise.

6.3 Regular Grammars and Finite Automata 199

Theorem 6.3.2
LetM=(Q, I, &, ¢o, F) be an NFA. Define a regular grammar G = (V, £, P, gg) as
follows:
) V=q,
i) ¢; = aq; € P whenever 8(¢;, a) =g,
iii) g; > 2 €Pifg; €F.

Then L(G) = L(M).

The constructions outlined in Theorems 6.3.1 and 6.3.2 can be applied sequentially to
shift from automaton to grammar and back again. Beginning with an NFA M, the sequence
of transformations would have the form

M G >M'.

Since G contains only rules of the form A — aB or A — A, the NFA M’ is identical to M.
A regular grammar G can be converted to an NFA that, in turn, can be reconverted into
a grammar G':

G >M >G'.

The grammar G’ that results from these conversions can be obtained directly from G by
adding a single new variable, call it Z, to the grammar and the rule Z — A. Allrules A — a
are then replaced by A — aZ.

Example 6.3.2

The regular grammar G’ that accepts L(M) is constructed from the automaton M from
Example 6.3.1.

G: S—aS|bB|aZ
B—bB|A
Z—A

The transitions provide the § rules and the first B rule. The A-rules are added since B and
Z are accepting states. (m]

The two conversions allow us to conclude that the languages generated by rcgular
grammars are precisely those accepted by finite automata. It follows from Theorems 6.2.3
and 6.3.1 that the language generated by a regular grammar is a regular set. The conversion
from automaton to regular grammar guarantees that every regular set is generated by some
regular grammar. This yields the characterization of regular languages promised in Section
33: the languages generated by regular grammars.

200 Chapter 6 Properties of Regular Languages

Example 6.3.3

The language of the regular grammar from Example 3.2.12 is the set of strings over {a, b, c}
that do not contain the substring abc. Theorem 6.3.1 is used to construct an NFA that accepts
this language.

S—>bS|cSlaB| A
B—>aB|cS|bC|A
C—>aB|bS|A

Example 6.3.4

A regular grammar with alphabet {a, b} that generates strings with an even number of a’s and
an odd number of »’s can be constructed from the DFA in Example 5.3.5. This machine is
reproduced below with the states [¢,, ¢,), [0,, €3], [e4, 0], and [0,, 0p] renamed S, A, B,
and C, respectively.

The associated grammar is

S—aA|bB

A—aS|bC

B—bS|aC|A

C > aB | bA. =]

Closure Properties of Regular Languages
Regular languages have been defined, generated, and accepted. A language over an alphabet
Y is regular if it is
i) aregular set (expression) over &,
ii) accepted by a DFA, NFA, or NFA-A, or
iii) generated by a regular grammar.

6.4 Closure Properties of Regular Languages 201

A family of languages is closed under an operation if the application of the operation to
members of the family produces a member of the family. Each of the equivalent formula-
tions of regularity will be used to demonstrate closure properties of the family of regular
languages.

The recursive definition of regular sets establishes closure for the unary operation
Kleene star and the binary operations union and concatenation. This was also proved in
Theorem 5.5.3 using acceptance by finite-state machines.

Theorem 6.4.1

Let L; and L, be two regular languages. The languages L; UL,, L,L,, and L} are regular
languages.

The regular languages are also closed under complementation. If L is regular over the
alphabet T, then so is L = £* — L, the set containing all strings in X* that are not in L.
Theorem 5.3.3 used the properties of DFAs to construct a machine that accepts L from
one that accepts L. Complementation and union combine to establish the closure of regular
languages under intersection.

Theorem 6.4.2
Let L be a regular language over X. The language L is regular.

Theorem 6.4.3
LetL; and L, be regular languages over X. The language L; N L, is regular.
Proof. By DeMorgan’s Law

LiNnL, =T, ULy.

The right-hand side of the equality is regular since it is built from L, and L, using union
and complementation. []

Closure properties provide additional tools for establishing the regularity of languages.
The operations of complementation and intersection, as well as union, concatenation, and
Kleene star, preserve regularity when combining regular languages.

Example 6.4.1

Let L be the language over {a, b} consisting of all strings that contain the substring
aa but do not contain bb. The regular languages L; = (a U b)*aa(aUb)* and L, =
(a U b)*bb(a U b)* consist of strings containing substrings aa and bb, respectively. Hence,
L=L,NL, isregular. o

202 Chapter6 Properties of Regular Languages

Example 6.4.2
Let L be any regular language over {a, b}. The language

L, = {u | u € L and « has exactly one a}

is regular. The regular expression b*ab* describes the set of strings with exactly one a. The
language L| =L N b*ab* is regular since it is the intersection of regular languages. a

The next example exhibits the robustness of the family of regular languages. Adding or
removing a small number, in fact any finite number, of strings cannot turn a regular language
into a nonregular language.

Example 6.4.3

Let L; be a regular language over an alphabet ¥ and let L, € £* be any finite set of
strings. Then L; UL, and L, — L, are both regular. The critical observation is that any
finite language is regular. Why? The regularity of L; UL, and L; — L, then follows from
the closure of the regular languages under union and set difference (Exercise 8). u]

Example 6.4.4

The set SUR(L) = {v | uv € L} consists of all suffixes of strings of the langauge L. For
example, if aabb € L, then A, b, bb, abb, and aabb are in SUF(L). We will show that if
L is regular, then so is SUF(L). Since L is regular, we know that it is defined by a regular
expression, accepted by a finite automaton, and generated by a regular grammar. We may
use any of these categorizations of regularity to show that SUF(L) is regular.

Using the grammatical characterization, we know that L is generated by a regular
grammar G = (V, Z, P, §). We may assume that G has no useless symbols. If it did, we
would use the algorithm from Section 4.4 to remove them while preserving the language.

A suffix of v of G is produced by a derivation of the form

S uA=>uv.
Intuitively, we would like to add a rule S — A to G to directly generate the suffix
S=>ASv.

Unfortunately, the resulting grammar would not be regular. To fix that problem, we will use
grammar transformations from Chapter 4.
We begin by defining a new grammar G’ = (V/, Z, P/, §') by

V =VU{Ss)
P=PU({S'> A|AeV)

6.5 A Nonregular Language 203

A derivation in G’ uses only onc rule not in G. Any string in L is produced by a derivation
of the form

S'=S5S>w,
while the remaining suffixes are generated by
S=>ADw.

Consequently, L(G) = SUF(L). We can obtain an equivalent regular grammar by removing
#-rules and chain rules from G, a

A Nonregular Language

The incompletely specified DFA

@ a a /Az\ a@ a
b b
b b b

accepts the language {a'b’ | i < n}. The states A; count the number of leading a's in the
mput string. Upon processing the first b, the machine enters the sequence of states labeled
B;. The accepting state By is entered when an equal number of b’s are processed. This
strategy cannot be extended to accept the language L = {a’b’ | i > 0} since it would require
infinitely many states. However, there may be other strategies and machines that accept L
that only require finitely many states. We will show that this is not the case, that L is not
accepted by any DFA and therefore is not a regular language.

The proof of the nonregularity of the language L = {a’5’ | i > 0} is by contradiction.
We assume that there is a DFA that accepts L and show that it must have states that record
the number of @s in the same manner as the states A,, A,, . . . in the preceding diagram. It
follows that the machine must have infinitely many states, which contradicts the requirement
that a DFA has only finitely many states. The contradiction allows us to conclude that no
DFA can accept L.

We begin with the assumption that L is accepted by some DFA, call it M. The extended
transition function 4 is used to show that the automaton M must have an infinite number
of states. Let A; be the state of the machine entered upon processing the string a'; that
i5.8(gg, a') = A;. Foralli, j > O withi # j, a’b’ € L and a/b* ¢ L. Hence, 8(gq, a'b’) #
3(gq, a/b') since the former is an accepting state and the latter rejecting. Now

8(qo, a'b')y=50(qq, a").) =8(A;, b) eL

204 Chapter 6 Properties of Regular Languages

and
8(go. a’b'y = 33 (qq, a’), by = 8(4;, b)) ¢ L.

Consequently, 8(4;, b') # (A j»b"). In a deterministic machine, two computations that
begin in the same state and process the same string must end in the same state. Since the
computations 5(A,~. b') and 5 (Aj, b') process the same string but terminate in different
states, we conclude that A4; # A j*

We have shown that states A; and A; are distinct for all values of i 7 j. Any de-
terministic finite-state machine that accepts L must contain an infinite sequence of states
corresponding to Ag, A, Aj,This violates the restriction that limits a DFA to a finite
number of states. Consequently, there is no DFA that accepts L, or equivalently, L is not
regular. The preceding argument justifies Theorem 6.5.1.

Theorem 6.5.1
The language {a‘b’ | i > 0} is not regular.

The argument establishing Theorem 6.5.1 is an example of a nonexistence proof. We
have shown that no DFA can be constructed, no matter how clever the designer, to accept the
language {a'b’ | i > 0}. Proofs of existence and nonexistence have an essentially different
flavor. A language can be shown to be regular by constructing an automaton that accepts
it. A proof of nonregularity requires proving that no machine can accept the language.
Theorem 6.5.1 can be generalized to establish the nonregularity of a number of languages.

Corollary 6.5.2 (to the proof of Theorem 6.5.1)

Let L be a language over X. If there are sequences of distinct strings u#; € £* and v; €
Z*, i >0, with »;v; € L and ujv; ¢Lfori # j, then L is not a regular language.

The proof is identical to that of Theorem 6.5.1, with ; replacing «' and v; replacing
b

Example 6.5.1

The set L of palindromes over {a, b} is not regular. By Corollary 6.5.2, it is sufficient to
discover two sequences of strings u; and v; that satisfy u;v; € L and u;v; ¢ L forall i # j.
The strings
ui=a'b
i

v, =a

fulfill these requirements. a

6.6 The Pumping Lemma for Regular Languages 205

Example 6.5.2

Grammars were introduced as a formal structure for defining the syntax of languages.
Corollary 6.5.2 can be used to show that regular grammars are not a sufficiently powerful
tool to define programming languages containing arithmetic or Boolean expressions in infix
form. The grammar AE
AE: S— A
A->T|A4T
T —b|(A)
generates additive expressions using -+, parentheses, and the operand b. For example, (),
b+ (b), and ((b)) are in L(AE).
Infix notation permits—in fact, requires—the nesting of parentheses. The derivation
S=T
= (4)
=(T)
= (b)
exhibits the generation of the string (b) using the rules of AE. Repeated applications of the
sequence of rules T = (A) = (T') before terminating the derivation wilb the application of
the rule T — b generates the strings ((b)), (((b))). The strings (‘b and)’ satisfy the
requirements of the sequences #; and v; of Corollary 6.5.2. Thus the language defined by

the grammar AE is not regular. A similar argument can be used to show that programming
languages such as C, C**, and Java, among others, are not regular. O

Just as the closure properties of regular languages can be uscd to establish regularity,
they can also be used to demonstrate the nonregularity of languages.

Example 6.5.3

The language L ={a’b’ | i, j >0 and i # j} is not regular. If L is regular then, by Theo-
rems 6.4.2 and 6.4.3, so is L N a*b*. But L N a*b* = {a'b’ | i > 0}, which we know is not
regular. o

BE The Pumping Lemma for Regular Languages

The existence of nonregular languages was established in the previous section by demon-
strating the impossibility of constructing a DFA to accept the language. In this section a more
seneral criterion for establishing nonregularity is developed. The main result, the pumping
Yemma for regular languages, requires strings in a regular language to admit decompositions
satisfying certain repetition properties.

206 Chapter 6 Properties of Regular Languages

Pumping a string refers to constructing new strings by repeating (pumping) substrings
in the original string. Acceptance in the state diagram of the DFA

illustrates pumping strings. Consider the string z = ababbaaab in L(M). This string can be
decomposed into substrings u, v, and w where u = a, v = bab, w = baaab, and z = uvw.
The strings a(bab)'baaab are obtained by pumping the substring bab in ababbaaab.

As usual, processing z in the DFA M corresponds to generating a path in the state
diagram of M. The decomposition of z into u, v, and w breaks the path in the state diagram
into three subpaths. The subpaths generated by the computation of substrings ¥ = a and
w = baaab are gy, q; and ¢y, g3, g2, 9o, 91, ¢3. Processing the second component of
the decomposition generates the cycle ¢;, g3, g2, ¢;. The pumped strings uv'w are also
accepted by the DFA since the repetition of the substring v simply adds additional trips
around the cycle q,, g3, ¢, g, before the processing of w terminates the computation in
state gs.

The pumping lemma requires the existence of such a decomposition for all sufficiently
long strings in the language of a DFA. Two lemmas are presented establishing conditions
guaranteeing the existence of cycles in paths in the state diagram of a DFA. The proofs
utilize a simple counting argument known as the pigeonhole principle. This principle is
based on the observation that given a number of boxes and a greater number of items to be
distributed among them, at least one of the boxes must receive more than one item.

Lemma 6.6.1

Let G be the state diagram of a DFA with k states. Any path of length £ in G contains a
cycle.

Praof. A path of length k contains k¥ + 1 nodes. Since there are only k nodes in G, there
must be a node, call it g;, that occurs in at least two positions in the path. The subpath from
the first occurrence of g; to the second produces the desired cycle. |

Paths with length greater than & can be divided into an initial subpath of length k and
the remainder of the path. Lemma 6.6.1 guarantecs the existence of a cycle in the initial
subpath. The preceding remarks are formalized in Corollary 6.6.2.

6.6 The Pumping Lemma for Regular Languages 207

Corollary 6.6.2

Let G be the state diagram of a DFA with £ states and let p be a path of length k or more.
The path p can be decomposed into subpaths g, r, and s where p = grs, the length of qr is
less than or equal to k, and r is a cycle.

Theorem 6.6.3 (Pumping Lemma for Regular Languages)

Let L be a regular language that is accepted by a DFA M with & states. Let z be any string in
L vyith length(z) > k. Then z can be written uvw with length(uv) <k, length(v) > 0, and
uv'w e Lforalli >0.

Proof. Letz € L be astring with length n > k. Processing z in M generates a path of length
n in the state diagram of M. By Corollary 6.6.2, this path can be broken into subpaths q,
r. and s, where r is a cycle in the state diagram. The decomposition of z into u, v, and w
consists of the strings spelled by the paths g, r, and s. []

The paths corresponding to the strings uv'w begin and end at the same nodes as
the computation for uvw. The sole difference is the number of trips around the cycle r.
Consequently, if uvw is accepted by M, then so is uv'w.

Properties of the particular DFA that accepts the language L are not specifically men-
tioned in the proof of the pumping lemma. The argument holds for all such DFAs, including
the DFA with the minimal number of states. The statement of the theorem could be strength-
ened to specify k as the number of states in the minimal DFA accepting L.

The pumping lemma is a powerful tool for proving that languages are not regular. Every
string of length & or more in a regular language, where & is the value specified by thc pumping
lemma, must have an appropriate decomposition. To show that a language is not regular,
it suffices to find one string that does not satisfy the conditions of the pumping lemma.
The use of the pumping lemma to establish nonregularity is illustrated in the following
examples. The technique consists of choosing a string z in L and showing that there is no
decomposition uvw of z for which uvw is in L for all { > 0.

The first two examples show that computations of a finite state machine are not
sufficiently powerful to determine whether a number is a perfect square or a prime.

Example 6.6.1

Let L = {z € {a}* | length(z) is a perfect square}. Assume that L is regular. This implies
that L is accepted by some DFA. Let k be the number of states of the DFA. By the pumping
lemma, every string z € L of length £ or more can be decomposed into substrings u, v, and
« such that length(uv) <k, v # A, and uv'w € Lforalli >0,

Consider the string z = a** of length k2. Since z is in L and its length is greater than k, z
can be written z = uvw where the u, v, and w satisfy the conditions of thc pumping lemma.

208 Chapter6 Properties of Regular Languages

In particular, 0 < length(v) < k. This observation can be used to place an upper bound on
the length of uvw:

length(uvzw) = length(uvw) + length(v)
=K+ length(v)
<k+k
<k +2k+1
= (k+ 1%

The length of uvw is greater than k2 and less than (k + 1) and therefore is not a perfect
square. Thus the string #v?w obtained by pumping v once is not in L. We have shown
that there is no decomposition of z that satisfies the conditions of the pumping lemma. The
assumption that L is regular leads to a contradiction, establishing the nonregularity of L.

o

Example 6.6.2

To show that the language L = {a’ | i is prime } is not regular, we assume that there is a DFA
with some number k states that accepts it. Let # be a prime greater than k. The pumping
lemma implies that a" can be decomposed into substrings uvw, v # A, such that uv’w is
in L for all / > 0. Assume that such a decomposition exists.

If uv™ 1y € L, then its length must be prime. But

n+1

length(uv™ ™ w) = length(uvv" w)

= length(uvw) + length(v™)
=n + n(length(v))
=n(1+ length(v)).

Since its length is not prime, #v™+!w is not in L. Thus there is no division of a” into uvw
that satisfies the pumping lemma and we conclude that L is not regular. u]

In the preceding examples, the constraints on the length of the strings were sufficient
to prove that the languages were nol regular. Often the numeric relationships among the
elements of a string are used to show that there is no substring that satisfies the conditions
of the pumping lemma. We will now present another argument, this time using the pumping
lemma, that demonstrates the nonregularity of {a'b’ | i > 0}.

Example 6.6.3

To show that L = {¢’b’ | i > 0} is not regular, we must find a string in L of appropriate length
that has no pumpable substring. Assume that L is regular and let k& be the number specified

6.6 The Pumping Lemma for Regular Languages 209

by the pumping lemma. Let z be the string a*b*. Any decomposition of uvw of z satisfying
the conditions of the pumping lemma must have the form

¥ v oW

a al afi-ipk,
where i + j <k and j > 0. Pumping any substring of this form produces uwvlw =
a‘algla*—1-ipk = gka/b* whichisnotinL. Since z € L has no decomposition that satisfies
the conditions of the pumping lemma, we conclude that L is not regular. O

Example 6.6.4

The language L = {a’b™c" | 0 <i, 0 <m < n} is not regular. Assume that L is accepted by
a DFA with & states. Then, by the pumping lemma, every string z € L with length ¥ or more
can be written z = yvw, with length(uv) <k, length(v) > 0, and uv'w € L for all i > 0.

Consider the string z = ab*c**1, which is in L. We must show that there is no suitable
decomposition of z. Any decomposition of z must have one of two forms, and the cases are
examined separately.

Case 1: A decomposition in which a ¢ v has the form

u v w
ab’ bi blc-—r - L'k+l

where i + j <k —1 and j > 0. Pumping v produces uv?w = ab'b/b/bk—i=ick+1l =
ab*bIck), whichisnotinL.

Case 2: A decomposition of z in which a € v has the form

¥V oow
A ab brickt!

where i <k — 1. Pumping v zero times produces «v%w = b*~cf+1, which is not in L since
it does not contain an a.

Since ab*c**1 has no decomposition with a “pumpable” substring, L is not regular. 0O

The pumping lemma can be used to determine the size of the language accepted by a
DFA. Pumping a string generates an infinite sequence of strings that are accepted by the
DFA. To determine whether a regular language is finite or infinite it is only necessary to
determine if it contains a pumpable string.

Theorem 6.6.4
Let M be a DFA with & states.
i) L(M) is not empty if, and only if, M accepts a string z with length(z) < k.

i) L(M) has an infinite number of members if, and only if, M accepts a string z where
k < length(z) < 2k.

210 Chapter6 Properties of Regular Languages

Proof.
i) L(M) is clearly not empty if a string of length less than % is accepted by M.

Now let M be a machine whose language is not empty and let z be the smallest string
in L(M). Assume that the length of z is greater than ¥ — 1. By the pumping lemma, z can be
written uvw where uviw € L. In particular, uv%w = uw is a string smaller than z in L. This
contradicts the assumption of the minimality of the length of z. Therefore, length(z) < k.

ii) If M accepts a string z with k < length(z) < 2k, then z can be written uvw wher; u, v,
and w satisfy the conditions of the pumping lemma. This implies that the strings uv'w are
inLforalli >0.

Assume that L(M) is infinitc. We must show that there is a string whose length is between
k and 2k — 1 in L(M). Since there are only finitely many strings over a finite alphabet with
length less than &, L(M) must contain strings of length greater than k — 1. Choose a string
z € L(M) whose length is as small as possible but greater than k — 1. If k < length(z) < 2k,
there is nothing left to show. Assume that length(z) > 2k. By the pumping lemma, z = uvw,
length(v) <k, and uv®w = ww € L(M). But this is a contradiction since uw is a string whose
length is greater than k — 1 but strictly smaller than the length of z. [|

The preceding result establishes a decision procedure for determining the cardinality
of the language of a DFA. If k is the number of states and j the size of the alphabet of the
automaton, there are (j¥ — 1)/(j — 1) strings having length less than £. By Theorem 6.6.4,
testing each of these determines whether the language is empty. Testing all strings with
length between k and 2k — 1 resolves the question of finite or infinite. This, of course,
is an extremely inefficient procedure. Nevertheless, it is effective, yielding the following
corollary.

Corollary 6.6.5
Let M be a DFA. There is an algorithm that determines whether L(M) is empty, finite, or
infinite,

The closure properties of regular language can be combined with Corollary 6.6.5 to
develop a decision procedure that determines whether two DFAs accept the same language.

Corollary 6.6.6

Let M; and M, be two DFAs. There is a decision procedure to determine whether M; and
M, are equivalent.

Proof. LectL;and L, be the languages accepted by M, and M,. By Theorems 6.4.1, 6.4.2,
and 6.4.3, the language .
L=(L,NnL)ud,NLy)

is regular. L is empty if, and only if, L, and L, are identical. By Corollary 6.6.5, therc is a
decision procedure to determine whether L is empty, or equivalently, whether M, and M,
accept the same language. [|

6.7 The Myhill-Nerode Theorem 211

E The Myhill-Nerode Theorem

Kleene’s Theorem established the relationship between regular languages and finite au-
tomata. In this section regularity is characterized by the existence of an equivalence relation
on the strings of the language. This characterization provides a method for obtaining the
minimal state DFA that accepts a regular language and provides the justification for the
DFA minimization presented in Algorithm 5.7.2.

Definition 6.7.1

Let L be alanguage over 3. Strings 1, v € ©* are indistinguishable in L if, forevery w € &%,
either »w and vw are both in L or neither uw nor vw is in L.

Using membership in L as the criterion for differentiating strings, 1 and v are distin-
guishable if there is some string w whose concatenation with « and v produces strings with
different membership values in L. That is, w distinguishes u and v if one of »w and vw is
in L and the other is not.

Indistinguishability in a language L defines a binary relation =; on T*; u = vif u
and v are indistinguishable. It is easy to see that =, is reflexive, symmetric, and transitive.
These observations provide the basis for Lemma 6.7.2.

Lemma 6.7.2
For any language L, the relation = is an equivalence relation.

Example 6.7.1

Let L be the regular language a(a U b)(bb)*. Strings aa and ab are indistinguishable since,
for any w, gaw and abw are either both in L or both not in L. The former arises when w
consists of an even number of b’s and the latter for any other string. The pair of strings 5 and
ba are also indistinguishable in L since bw and baw are not in L for any string w. Strings
a and ab are distinguishable in L since concatenating bb to a produces abb ¢ L and to ab
produces abbb € L.

The equivalence classes of = are

Representative Element Equivalence Class

*1<, A

6], b(a U b)* Ua(a U b)(bb)*a(a U b)* Ua(a U b)(bb)*ba(a U b)*
lal-, a

faal., a(a U b)(bb)*

[aab]., a(a U b)b(bb)*

212 Chapter6 Properties of Regular Languages

Example 6.7.2

Let L be the language {a'b* | i > 0}. The strings o and a/, where i $ j, are distinguishable
in L. Concatenating b produces a’b’ € L and a/b’ ¢ L. Thus each string @', i =0, 1, .. .,
is in a different equivalence class. This example shows that the indistinguishability relation
=;, may generate infinitely many equivalence classes. u}

The equivalence relation = defines indistinguishability on the basis of membership
in the language L. We now define the indistinguishability of strings on the basis of compu-
tations of a DFA.

Definition 6.7.3

LetM = (Q, X, 4, gq, F) be a DFA that accepts L. Strings u#, v € =* are indistinguishable
by M if §(gy, 1) = é(gy, v).

Strings u and v are indistinguishable by M if the computation of M with input # halts
in the same state as the computation with v. It is easy to see that indistinguishability defined
in this manner is also an equivalence relation over *, Each state g; of M that is reachable
by computations of M has an associated equivalence class: the set of all strings whose
computations halt in ¢;. Thus the number of equivalence classes of a DFA M is at most the
number of states of M. Indistinguishability by a machine M will be denoted =y;.

Example 6.7.3
Let M be the DFA

a a a

@

b

that accepls the language a*ba*(ba*ba*)*, the set of strings with an odd number of &’s. The
equivalence classes of X* defined by the relation =) are

State Associated Equnivalence Class

4 a*
q) a*ba*(ba*ba™)*
g> a*ba*ba*(ba*ba*)*

a

Indistinguishability relations can be used to provide additional characterizations of
regularity. These characterizations use the right-invariance of the indistinguishability equiv-
alence relations. An equivalence relation = over X* is said to be right-invariant if u = v
implies uw = vw for every w € T*. Both = and =, are right-invariant.

6.7 The Myhill-Nerode Theorem 213

Theorem 6.7.4 (Myhill-Nerode)
The following are equivalent:

i) L is regular over X.

ii) There is a right-invariant equivalence relation = on £* with finitely many equivalence
classes such that L is the union of a subset of the equivalences classes of =.

iii) = has finitely many equivalence classes.

Proof.

Condition (i) implies condition (ii): Since L is regular, it is accepted by some DFA M =
Q. X, 8, qo, F). We will show that =) satisfies the conditions of statement (ii). As previ-
ously noted, =), has at most as many equivalence classes as M has states. Consequently,
the number of equivalence classes of =) is finite. Right-invariance follows from the de-
terminism qf the computations of M, which ensures that 3 (g, uw) = H (g9, vw) whenever
8(qo, u) = é(qp. V).

It remains to show that L is the union of some of the equivalence classes of =;. For each
state g; of M, there is an equivalence class consisting of the strings whose computations halt
n g;. The language L is the union of the equivalence classes associated with the accepting
states of M.

Condition (i) implies condition (iii): Let = be an equivalence relation that satisfies (ii). We
begin by showing that every = equivalence class [#]_ is a subset of the =; equivalence
class [u]=L.

Let u and v be any two strings from [u]_; that is, ¥ = v. By right-invariance, uw = vw
for any w € X*. Thus #w and vw are in the same = equivalence class. Since L is the union
of some set of equivalence classes of =, every string in a particular = equivalence class has
the same membership value in L. Consequently, #w and vw are either both in L or both not
m L. It follows that « and v are in the same equivalence class of =; .

Since [u]- C [u]<, for every string u € T*, there is at least one = equivalence class
m each of the = equivalence classes. It follows that the number of equivalence classes of
=; is no greater than the number of equivalence classes of =, which is finite.

Condition (iii) implies condition (i): To prove that L is regular when =; has only a finite
number of equivalence classes, we will build a DFA M; that accepts L. The alphabet of
M, consists of the symbols in L and the states arc the equivalence classes of =y . The start
state is the equivalence class containing A. An equivalence class is an accepting state if it
contains an element u € L. All that remains is to define the transition function and show
that the language of M is L.

For a symbol a € I, we define 8([u]; , @) = [ua]-, . By this definition, the result of
a transition from state (u]s, with symbol a is the equivalence class [ua]=L. We must show
that the definition of the transition is independent of the choice of a particular element from
the equivalence class |u], .

Let u and v be two strings in that are =; equivalent. For the transition function § to
be well defined, [ua]-, must be the same equivalence class as [va].,, or equivalently,

214 Chapter 6 Properties of Regular Languages

ua =, va. To establish this, we need to show that for any string x € £*, uax and vax are
either both in L or both not in L. By the definition of =, #w and vw are both in L or both
not in L for any w € X*. Letting w = ax gives the desired result.

All that remains is to show that L(M;) = L. For any string «, H (A=, w) = [u]=L. If
u is in L, the computation 5([A]=L, u) halts in the accepting state [«]=, - Exercise 25 shows
that either all of the elements in an equivalence [#]-, areinL or none of the elements are
inL.Thusif u ¢ L, then [u], is not an accepting state. It follows that a string u is accepted
by M, _if, and only if, 4 € L.

Note that the equivalence classes of = are precisely those of =y , the indistinguish-
ability relation over X* generated by the machine M. []

Example 6.7.4

The DFA M from Example 5.7.1 accepts the language (a U b)(a U b*). The eight equiva-
lence classes of the relation =), with the associated states of M are

State Equivalence Class State = Equivalence Class

40 A 4. b

G a gs ba

9 aa % bb*

q3 abt 7 (aaf{a Ub) Uabta U ba(a U b) Ubb*a)(a U b)*

The equivalence relation =; identifies strings # and v as indistinguishable if for any
w, either both 4w and vw are in L or both are not in L. The = equivalence classes of the
language (a U b)(a U b*) are

=, Equivalence Classes
s, A
lal=, aub
[aa]EL aa U ba
labls, abt L bbt
labal., (aa(a Ub)Uab*aUba(aUb)Ubb*a)aUb)*

where the string inside the brackets is a representative element of the class. It is easy to
see that the strings within an equivalence class are indistinguishable and that strings from
different classes are distinguishable.

If we denote the =) equivalence class of strings whose computations halt in state g;
by clym(g;), the relationship between the equivalence classes of =; and = is

6.7 The Myhill-Nerode Theorem 215

(Al =chu(go)
lale, =clulgn) Y chy(ga)
laals, =clu(g2) U chu(gs)
lablo, = clu(g3) U clv(ge)
labal. = clu(g7).

Using the technique outlined in the Myhill-Nerode Theorem, we can construct a
DFA M accepting L from the equivalence classes of =;. The DFA obtained by this
construction is

which is identical to the DFA M’ in Example 5.7.1 obtained using the minimization tech-
nique presented in Section 5.7. a

Theorem 6.7.5 shows that the DFA M, obtained from the =; equivalence classes is
the minimal state DFA that accepts L.

Theorem 6.7.5

Let L be a regular language and =; the indistinguishability relation defined by L. The
minimal state DFA accepting L is the machine My, defined from the equivalence classes of
= as specified in Theorem 6.7.4.

Proof. LetM = (Q, X, 3, gy, F) be any DFA that accepts L and let =y be the equiva-
lence relation generated by M. By the Myhill-Nerode Theorem, each equivalence class of
=, is a subset of an equivalence class of =| . Since the equivalence classes of both =) and
= partition *, =) must have at least as many equivalence classes as =; . Combining the
preceding observation with the construction of My, from the equivalence classes of =g, we
see that
the number of states of M

> the number of equivalence classes of =y

> the number of equivalence classes of =,

= the number of states of M.

216 Chapter6 Properties of Regular Languages

Thus a DFA M that accepts L may not have fewer states than M; , and we conclude that M,
is the minimal state DFA that accepts L. |

The statement of Theorem 6.7.5 asserts that the My is the minimal state DFA that
accepts L. Exercise 31 establishes that all minimal state DFAs accepting L are identical to
M, except possibly for the names assigned to the states.

Theorems 6.7.4 and 6.7.5 establish the existence of a unique minimal state DFA
M, that accepts a language L. The minimal state machine can be constructed from the
equivalence classes of the relation =; . Unfortunately, to this point we have not provided
a straightforward method to obtain these equivalence classes. Theorem 6.7.6 shows that
the machine whose states are the =1, equivalence classes is the machine produced by the
minimization algorithm in Section 5.7.

Theorem 6.7.6

Let M be a DFA that accepts L and M’ the machine obtained from M by minimization
construction in Section 5.7. Then M’ =M .

Proof. By Theorem 6.7.5 and Exercise 31, M is the minimal state DFA accepting L if the
number of states of M’ is the same as the number of equivalence classes of = . Following
Definition 6.7.3, there is an equivalence relation =), that associates a set of strings with
each state of M'. The equivalence class of =) associated with state [g;] is

chy (gD = {u | §'(lqo) w) =g = |J {u18(g0, w)=4g;}

q;€lq]

where &’ and § are the extended transition functions of M’ and M, respectively. By the
Myhill-Nerode Theorem, clp([g;]) is a subset of an equivalence class of =y, .

Assume that the number of states of M’ is greater than the number of equivalence classes
of =g . Then there are two states [¢;] and [g;] of M’ such that c/\:([g;]) and cly([g;]) are
both subsets of the same equivalence class of = . This implies that there are strings u and
v such that 8(gq, ¥) = g;, 8(gg, v) = gj,and u =g v.

Since [¢;] and [g J] are distinct states in M, there is a string w that distinguishes these
states. That is, either 8(q,, w) is accepting and B(q j» w) is nonaccepting or vice versa. It
follows that uw and vw have different membership values in L. This is a contradiction
since ¥ =;_ v implies that uw and vw have the same membership value in L for all strings
w. Consequently, the assumption that the number of states of M’ is greater than the number
of equivalence classes of =; must be false.]

The characterization of regularity in the Myhill-Nerode Theorem gives another method
for establishing the nonregularity of a language. A language L is not regular if the equiva-
lence relation = has infinitely many equivalence classcs.

Exercises 217

Example 6.7.5
In Example 6.7.2, it was shown that the language {a‘b’ | i > 0} has infinitely many =,
equivalence classes and therefore is not regular. u]
Example 6.7.6

The Myhill-Nerode Theorem will be used to show that the language L = {a® |i >0} is
not regular. To accomplish this, we show that a? and a? are distinguishable by the =
equivalence relation whenever i < j. Concatenating a? with each of these strings produces
a*a? =4?*' eLand a¥ a? ¢ L. The latter string is not in L since it has length greater than
2J but less than 2/+!, Thus, a® #; a? . These strings produce an infinite sequence [a®] =,
[a']=,, [az] =, [a*] =, . . . of distinct equivalence classes of L. (m]

Exercises

1. Use the technique from Section 6.2 to build the state diagram of an NFA-A that accepts
the language (ab)*ba. Compare this with the DFA constructed in Exercise 5.22(a).

2. For each of the state diagrams in Exercise 5.40, use Algorithm 6.2.2 to construct a
regular expression for the language accepted by the automaton.

3. The language of the DFA M in Example 5.3.4 consists of all strings over {a, b} with
an even number of a’s and an odd number of b’s. Use Algorithm 6.2.2 to construct a
regular expression for L(M). Exercise 2.38 requested a nonalgorithmic construction of
a regular expression for this language, which, as you now see, is a formidable task.

4. Let G be the grammar

G: S—»>aS|bA|a
A—aS|bA|b.

a) Use Theorem 6.3.1 to build an NFA M that accepts L(G).
b) Using the result of part (a), build a DFA M’ that accepts L(G).
c¢) Construct a regular grammar from M that generates L(M).
d) Construct a regular grammar from M’ that generates L(M').
e) Give aregular expression for L(G).
5. Let M be the NFA

21

* 6.

10.

*11.

*12.

13.

14.

8 Chapter6 Properties of Regular Languages

a) Construct a regular grammar from M that generates L(M).
b) Give a regular expression for L(M).

Let G be a regular grammar and M the NFA obtained from G according to Theo-
rem 6.3.1. Prove that if § = wC, then there is a computation [S, w] - [C, A]in M.

. Let L be a regular language over {a, b, ¢}. Show that each of the following sets is

regular.

a) {w | w € L and w ends with aa}

b) {w | w € L or w contains an g}

¢) {w|w ¢ L and w does not contain an a}
d) {uv|ue Landv ¢ L}

. Prove that the family of regular languages is closed under the operation of set difference.

. Prove that the family of regular languages is not closed under intersection with context-

free languages. That is, if L is regular and L; context-free, L N L} need not be regular.

Is the family of regular languages closed under infinite unions? That is, if Ly, L;, L, . . .
[o o]

arc regular, is U L, necessarily regular? If so, prove it. If not, give a counterexample.
i=0

Let L be a regular language. Show that the following languages are regular.

a) The set P = {u | uv € L} of prefixes of strings in L.

b) The set LR = {w® | w € L} of reversals of strings in L.

c) The set E = {uv | v € L} of strings that have a suffix in L.

d) The set SUB = {v | uvw € L} of strings that are substrings of a string in L.

Let L be a regular language containing only strings of even length. Let L’ be the
language {u | uv € L and length(u) = length(v)}. L' is the set of all strings that contain
the first half of strings from L. Prove that L' is regular.

Use Corollary 6.5.2 to show that each of the following sets is not regular.
a) The set of strings over {a, b} with the same number of a’s and b’s.
b) The set of palindromes of even length over {a, b}.
c) The set of strings over {(,)} in which the parentheses are paired, for example,
A, (), OO, (MO
d) The language {a’(ab)’ (ca)? | i, j > 0}.
Use the pumping lemma to show that each of the following sets is not regular.
a) The set of palindromes over {a, b}
b) {a"b™ | n < m)
o) {d'b/e¥ i >0, j>0)
d) {ww | w € {a, b}*}
*e) The set of initial sequences of the infinite string

15.
16.

17.

18.

b]

Exercises 219

abaabaaabaaaab . . . ba"ba"*'b . . .
f) The set of strings over {«, b} in which the number of a’s is a perfect cube

Prove that the set of nonpalindromes over {a, b} is not a regular language.

Let L be a regular language and let L) = {uu | # € L} be the language L “doubled.” Is
L necessarily regular? Prove your answer.

Let L, be a nonregular language and L, an arbitrary finite language.
a) Prove that L, UL, is nonregular.
b) Prove that L, — L, is nonregular.

c) Show that the conclusions of parts (a) and (b) are not true if L, is not assumed to
be finite.

Give examples of languages L; and L, over {a, b} that satisfy the following descrip-
tions.

a) L, is regular, L, is nonregular, and L, U L, is regular.

b) L, is regular, L, is nonregular, and L, U L, is nonregular.
¢) L, is regular, L, is nonrcgular, and L; N L, is regular.

d) L, is nonregular, L, is nonregular, and L; U L, is regular.
e) L, is nonregular and L7 is regular.

. Let X; and X, be two alphabets. A string homomerphism is a total function 4 from

I to X7 that preserves concatenation. That is, / satisfies
i) h(A) =2
i) h(uv) =h@)h().
a) LetL, C X} be aregular language. Show that the set {#(w) | w € L,} is regular over
X,. This set'is called the homomorphic image of L under h.

b) Let L, € 3 be a regular language. Show that the set {w € X} | A(w) € Ly} is
regular. This set is called the inverse image of L, under A.

. A context-free grammar G = (V, X, P, S) is called right-linear if each rule is of the

form

i) A—> u,or

ii) A—> uB,
where A, B € V, and u € T*, Use the techniques from Section 6.3 to show that the
right-linear grammars generate precisely the regular sets.

A context-free grammar G = (V, X, P, S) is called left-regular if each rule is of the
form

i) A— A,
il) A—>a,or
iii) A — Ba,
wherc A, Be V,anda € X.

220 Chapter 6 Properties of Regular Languages

22.

23.
24.
25.

26.

27.

28,

29.
30.
*31.

a) Design an algorithm to construct an NFA that accepts the language of a left-regular
grammar.

b) Show that the left-regular grammars generate precisely the regular sets.

A context-free grammar G = (V, Z, P, §) is called left-linear if each rule is of the
form

i)y Asu,or

ii) A — Bu,
where A, B € V, and u € £*. Show that the left-linear grammars generate precisely
the regular sets.
Give a regular language L such that =;_ has exactly three equivalence classes.
Give the = equivalence classes of the language a*b*.
Let [u]-, be a = equivalence class of a language L. Show that if [u]_, contains one
string v € L, then every string in [u]=L isinL.
Prove that = is right-invariant for any regular language L. That is, if u = v, then
ux = vx for any x € £*, where X is the alphabet of the language L.
Use the Myhill-Nerode Theorem to prove that the language {a’ | i is a perfect square }
is not regular.

Let u € [abl.,, and v € [aba],, be strings from the equivalence classes of
(a Ub) (a U b*) defined in Example 6.7.4. Show that u and v are distinguishable.

Give the equivalence classes defined by the relation =y, for the DFA in Example 5.3.1.
Give the equivalence classes defined by the relation =, for the DFA in Example 5.3.3.

Let M;_ be the minimal state DFA that accepts a language L defined in Theorems 6.7.4
and 6.7.5. Let M be another DFA that accepts L with the same number of states as
M; . Prove that Mj and M are identical except (possibly) for the names assigned to the
states. Two such DFAs are said to be isomorphic.

Bibliographic Notes

The equivalence of regular sets and languages accepted by finite automata was established
by Kleene [1956]. The proof given in Section 6.2 is modeled after that of McNaughton and
Yamada [1960]. Chomsky and Miller [1958] established the equivalence of the languages
generated by regular grammars and accepted by finite automata. Closure under homomor-
phisms (Exercise 19) is from Ginsburg and Rose [1963b]. The closure of regular sets under
reversal was noted by Rabin and Scott [1959]. Additional closure results for regular sets
can be found in Bar-Hillel, Perles, and Shamir [1961], Ginsburg and Rose [1963b], and
Ginsburg [1966]. The pumping lemma for regular languages is from Bar-Hillel, Perles, and
Shamir {1961]. The relationship between the number of equivalence classes of a language
and regularity was established in Myhill [1957] and Nerode [1958].

2.
s

Pushdown Automata and
Context-Free Languages

Regular languages have been characterized as the languages generated by regular grammars
£=ad accepted by finite automata. This chapter presents a class of machines, the pushdown
Etomata, that accepts the context-free languages. A pushdown automaton is a finite-state
zachine augmented with an external stack memory. The addition of a stack provides
5 pushdown automaton with a last-in, first-out memory management capability. The
sombination of stack and states overcomes the memory limitations that prevented the
mveptance of the language {a’b’ | i > 0} by a deterministic finite automaton.

As with regular languages, a pumping lemma for context-free languages ensures the
=ustence of repeatable substrings in strings of a context-free language. The pumping lemma
=ovides a technique for showing that many easily definable languages are not context-free.

fPushdown Automata

Theorem 6.5.1 established that the language {a’b’ | i > 0} is not accepted by any finite
sstomaton. To accept this language, a machine needs the ability to record the processing of
ey finite number of a’s. The restriction of having finitely many states does not allow the
msomaton to “remember” the number of leading a’s in an arbitrary input string. A new type
 automaton is constructed that augments the state-input transitions of a finite automaton
with the ability to utilize unlimited memory.

A pushdown stack, or simply a stack, is added to a finite automaton to construct a new
=achine known as a pushdown automaton (PDA). Stack operations affect only the top item
X the stack; a pop removes the top clement from the stack and a push places an element

221

222 Chapter 7 Pushdown Automata and Context-Free Languages

on the stack top. Definition 7.1.1 formalizes the concept of a pushdown automaton. The
components Q, X, gg, and F of a PDA are the same as in a finite automaton.

Definition 7.1.1

A pushdown automaton is a sextuple (Q, X, T, 8, gy, F), where Q is a finite sct of states,
¥ a finite set called the input alphabet, T a finite set called the stack alphabet, g the start
state, F C Q a set of final states, and § a transition function from Q x (X U (A}) x (T U{AD
to subsets of Q x (I" U {A}).

A PDA has two alphabets: an input alphabet £ from which the input strings are built
and a stack alphabet I" whose elements are stored on the stack. The stack is represented as
a string of stack elements; the element on the top of the stack is the leftmost symbol in the
string. We will use capital letters to represent stack clements and Greek letters to represent
strings of stack elements. The notation A« represents a stack with A as the top element. An
empty stack is denoted A. The computation of a PDA begins with the machine in state ¢,
the input on the tape, and the stack empty.

A PDA consults the current state, input symbol, and the symbol on the top of the stack
to determine the machine transition. The transition function & lists all possiblc transitions
for a given state, symbol, and stack top combination. The value of the transition function

a(qia a, A) = ([‘1;' B]’ [qko C]}

indicates that two transitions are possible when the automaton is in state g; scanning an a
with A on the top of the stack. The transition

lg, B] € 3(q, a, A)

new state I , currcnt stack top
new stack top current input symbol
current state

causes the machine to

i) change the state from ¢; to g,
ii) process the symbol a (advance the tape head),
iii) remove A from the top of the stack (pop the stack), and
iv) push B onto the stack.
Since multiple transitions may be specified for a machine configuration, PDAs are nonde-
terministic machiues.
A pushdown automaton can also be depicted by a state diagram. The labels on the arcs

indicate both the input and the stack operation. The transition 8(g;, a, A) = {[g;, Bl} is
depicted by

7.1 Pushdown Automata 223

@aA/B

The symbol / indicates replacement: A/ B indicates that A is replaced on the top of the stack
by B.

The domain of the transition function is Q x (X U {A}) x (I U {A}), which indicates
that A may occur in either the input or stack top positions of a transition. A A argument
specifies that the value of the component should be neither consulted nor acted upon by the
transition; the applicability of the transition is completely determined by the positions that
do not contain A.

When A occurs as an argument in the stack position of the transition function, the
transition is applicable whenever the current state and input symbol match those in the
transition regardless of the status of the stack. The stack top may contain any symbol or
the stack may be empty. The transition [g;, B] € 8(g;, a. A) is applicable whenever a
machine is in state ¢; scanning an a; the application of the transition will cause the machine
to enter ¢; and add B to the top of the stack.

The symbol A may also occur in the new stack position of a transition, [g;, A]€
8(g;, a, A). The execution such a transition does not push a symbol onto the stack. We
will now look at several examples of the effect of A in PDA transitions.

If the input position is A, the transition does not process an input symbol. Thus,
transition (i) pops and (ii) pushes the stack symbol A without altering the state or the input.

1) [gi, M€ 8(g;, A, A)

LA

o

A WA

If the action specified by a transition has A in the new stack top position, [g;, A], no symbol is
pushed onto the stack. Transition (iii) is the PDA equivalent of a finite automaton transition.
The applicability is determined only by the state and input symbol; the transition does not
consult nor does it alter the stack.

ii) [g;, Al€8(g;, A, A)

i-ii) [qJ’ A'] es(qi' a, A-)

224 Chapter 7 Pushdown Automata and Context-Free Languages

A PDA configuration is represented by the triple [¢;, w,], where g¢; is the machine
state, w the unprocessed input, and « the stack. The notation

l9i» w, @]k [g;. v, B]

indicates that configuration |g;, v, 8] can be obtained from [g;, w, &] by a single transition
of the PDA M. As before, K represents the result of a sequence of transitions. When there
is no possibility of confusion, the subscript M is omitted. A computation of a PDA is
a sequence of transitions beginning with the machine in the initial state with an empty
stack.

We are now ready to construct a PDA M to accept the language {a'b’ | i > 0}. The
computation begins with the input string w and an empty stack. Processing input symbol
a causes A to be pushed onto the stack. Processing » pops the stack, matching the number
of b’s to the number of a’s. The computation generated by the input string aabb illustrates
the actions of M.

M: Q={g0. ¢} a VA b AN (90, aabb, 1]
Y= {a, b} ' + [q07 abba A]
— hA/A
T = (A} (@) F [gg. bb, AA]
F=140, q1} F[q1, b, Al
6(qO' a, A-) = {[qO’ A]} |_ [qu A-a ;"]

8(qo. b, A) ={[q, A1}
8(q1, b, A) = {[g1, A1}

The computation of M with input a’b’ processes the entire string and halts in an
accepting state with an empty stack. These conditions beccome our criteria for acceptance.

Definition 7.1.2

LetM=(Q, £, T, 8, gy, F)beaPDA. A string w € £* is accepted by M if there is a
computation

[q01 w, A'.I F [qn A-r A']
where g; € F. The language of M, denoted L(M), is the set of strings accepted by M.

A computation that accepts a string is called successful. A computation that processes
the entire input string and halts in a nonaccepting configuration is said to be unsuccessful.
Becausc of the nondeterministic nature of the transition function, there may be computations
that cannot complete the processing of the input string. Computations of this form are also
considercd unsuccessful.

Acceptance by a PDA follows the standard pattern for nondeterministic machines; one
computation that processes the entire string and halts in a final state is sufficient for the

7.1 Pushdown Automata 225

string to be in the language. The existence of additional unsuccessful computations does
not affect the acceptance of the string.

Example 7.1.1

The PDA M accepts the language {wcw® | w € {a, b}*}. The stack is used to record the
string w as it is processed. Stack symbols A and B represent input a and b, respectively.

M: Q= {q0. ¢} 8(qp. a. A) = {Ig0. Al} bNB b g&
T={a,bc) 8o b N)={lgy B} M p
'={A, B} 8(qo, ¢, A) = {[gy, A1} @ c ML
F={q} 8(q1, a, A) = {[q1, A1}

3(41. bv B) = {[ql; }‘]}

A successful computation records the string w on the stack as it is processed. Once the ¢
is encountered, the accepting state g, is entered and the stack contains a string representing
wR. The computation is completed by matching the remaining input with the elements on
the stack. The computation of M with input abcha is

(g0, abcba, 1]
t [go, beba, Al
F [gq. cba, BA]
+[g1, ba, BA]
). a, A
F g1, A, A] o

A PDA is deterministic if there is at most one transition that is applicable for each
combination of state, input symbol, and stack top. Two transitions [g;, C] € 8(g;, 4, A)
and [g;, D] € 8(g;, v, B) are called compatible if any of the following conditions are
satisfied:

i) u=vand A=B.
ii) u=vand A=Aor B=A.
ili) A=Bandu=Aorv=A.
iv) u=Aorv=Aand A=AorB=A.
Compatible transitions can be applied to the sarne machine configurations. A PDA is deter-

ministic if it does not contain distinct compatible transitions. Both the PDA in Example 7.1.1
and the machine constructed to accept {a'h' | i > 0} are deterministic.

226 Chapter 7 Pushdown Automata and Context-Free Languages

Example 7.1.2

The language L = {a’ | i > 0} U {a’#’ | i > 0} contains strings consisting solely of a’s or
an equal number of a’s and b’s. The stack of the PDA M that accepts L maintains a record
of the number of a’s processed until a b is encountered or the input string is completely
processed.

aNA b A/
M: @ bA/A
AMA

’ AA

When scanning an q in state ¢, there are two transitions that are applicable. A string
of the form a’b’, i > 0, is accepted by a computation that remains in states gq and g;.
If a transition to state g, follows the processing of the final a in a string a’, the stack is
emptied and the input is accepted, Reaching ¢, in any other manner results in an unsuccessful
computation, since no input is processed after ¢, is entered.

The A-transition allows M to enter ¢, any time it is in gg. This transition introduces
nondeterminism into the computations of M. The accepting computation of a string a’
processes the entire string in g, transitions to ¢,, empties the stack, and accepts. o

Example 7.1.3
The even-length palindromes over {a, b} are accepted by the PDA

b BIM
g%ﬁ a A/\

That is, L(M) = {ww® | w € {a, b}*). A successful computation remains in state go while
processing the string w and enters state ¢; upon reading the first symbol in w¥. Unlike the
strings in Example 7.1.1, the strings in L do not contain a middle marker that induces the
change from state g, to ;. Nondeterminism allows the machine to guess when the middle of
the string has been reached. Transitions to g, that do not occur immediately after processing
the last element of w result in unsuccessful computations. u]

In Chapter 5 we showed that deterministic and nondeterministic finite automata ac-
cepted the same family of languages. Nondeterminism was a useful design feature but did

7.2 Variations on the PDA Theme 227

not increase the ability of the machine to accept languages. This is not the case for pushdown
automata.

There is no deterministic PDA that accepts the language L = {ww® | w € {a, b)*) from
Example 7.1.3. This can be seen intuitively by considering the properties needed by a PDA
to accept L. Since the computation of a PDA processes the input in a left-to-right manner,
the machine is not able to determine when the first half of the input string has been read. For
the nondeterministic machine M in Example 7.1.3, this poses no problem. The transition
from g to g, represents a nondeterministic guess that the symbol being scanned is the first
symbol of the second copy of w. For a string in L, one of the guesses will be correct and
the resulting computation accepts the input by matching the second half of the string with
the stack elements.

Consider the possible actions of a deterministic PDA processing the input strings

aabbaa and aabbbbaa.

When an a or b is read in the first half of a string, the corresponding stack symbol A or
B must be pushed onto the stack to be compared with the second half of the input. After
reading the first three symbols, the stack is BAA. Regardless of which of the two strings is
being processed, the next symbol is a b. To accept aabbau, it is necessary to pop the stack
to begin the matching of aab with baa. However, to accept the aabbbbaa the machine
must push a B onto the stack. A deterministic machine can have only one option for this
configuration and consequently onc of these two strings will not be accepted.

The languages accepted by deterministic pushdown automata include all regular lan-
guages and are a proper subset of the context-free languages. This family of languages,
which is important for programming language definition and parsing, consists of the lan-
guages that can be generated by LR(k) grammars. The use of LR(k) grammars for language
definition and deterministic parsing will be examincd in Chapter 19.

E Variations on the PDA Theme

Pushdown automata arc often defined in a manner that differs slightly from Definition 7.1.1.
In this section we examine several alterations to our definition that preservc the set of
accepted languages.

Along with changing the state, a transition in a PDA is accompanied by three actions:
popping the stack, pushing a stack element, and processing an input symbol. A PDA is
called atomic if each transition causes only one of the three actions to occur. Transitions in
an atomic PDA have the form

l) [qjo A] € 8(%, a, A’)’

o) [g;, A]€ 8(g;, A, A), or
m) [q;, AT€8(g;, A, A).

228 Chapter 7 Pushdown Automata and Context-Free Languages

Clearly, every atomic PDA is a PDA in the sense of Definition 7.1.1. Theorem 7.2.1
shows that the languages accepted by atomic PDAs are the same as those accepted by PDAs.
Moreover, it outlines a method to construct an equivalent atomic PDA from an arbitrary
PDA.

Theorem 7.2.1
Let M be a PDA. Then there is an atomic PDA M’ with L(M') = L(M).

Proof. To construct M, the nonatomic transitions of M are replaced by a sequence of
atomic transitions. Let [g;, B] € 8(g;, a, A) be a transition of M. The atomic equivalent
requires two new states, p; and p,, and the transitions

(P, A € 8(g;, a,)
8(]71, lt A) = {[Pz, A.]}

to accomplish the same result as the nonatomic single transition.

In a similar manner, a transition that consists of changing the state and performing two
additional actions can be replaced with a sequence of two atomic transitions. Replacing all
nonatomic transitions with a sequence of atomic transitions produces an equivalent atomic
PDA.]

An extended transition is an operation on a PDA that pushes a string of elements, rather
than just a single element, onto the stack. The transition [q;, BCD] € 8(g;, a, A) pushes
BCD onto the stack with B becoming the new stack top. A PDA containing extended
transitions is called an extended PDA. The apparent generalization does not increase the
set of languages accepted by pushdown automata. Each extended PDA can be converted
into an equivalent PDA in the sense of Dcfinition 7.1.1.

To construct a PDA from an extended PDA, extended transitions are transformed into a
sequence of transitions each of which pushes a single stack element. To achieve the result of
an extended transition that pushes k elements requires ¥ — 1additional states. The sequence
of transitions

[ph D] € 8(‘[,‘, a, A)

s(ph l- A') = {[p2’ C]}

5(P2, A" A') — {[qjs B]}
pushes the string BCD onto the stack and leaves the machine in state g;. The sequen-
tial execution of these three transitions produces the same result as the single extended
transition [g;, BCD] € é(g;. a, A). The preceding argument can be generalized to yield
Theorem 7.2.2.
Theorem 7.2.2
Let M be an extended PDA. Then there is a PDA M’ such that L(M') = L(M).

7.2 Variations on the PDA Theme 229

Example 7.2.1

Let L = {a'b* |i > 1}. A standard PDA, an atomic PDA, and an extended PDA are
constructed to accept L. The input alphabet {a, b}, stack alphabet {A}, and accepting state
g, are the same for each automaton. The states and transitions are

PDA Atomic PDA Extended PDA

Q=1{q0. 91 32} Q=091 902- 93 94} Q={q0, 01}
8(qp. a, A) = {[g2. Al} 8(qq. a, 1) = {[g3, Al} 8(qo0. a, A) ={[g0. AA]}
8(g2, A, A) = {lqp, Al} 8(g3 A, A) = {[q2. A]} 8(qq. b, A) = {lg). A}
8(q0- b, A) =1lg;, A} 8(g2. A, 2) ={lag, A} 8(qu. b, A) ={[g. A}
8(qy, b, A) ={lq,, Al} 8(qo, b, 1) ={lgy, A1}

8(qa, 2, A) = {lq1, A1}

8(q1, b, A) ={lg4, Al}

As might be expected, the atomic PDA requires more transitions and the extended
PDA fewer transitions than the equivalent standard PDA. The stack symbol A is used to
count the number of matching b’s required to accept the string. The extended transition
8(go, a, A) = {[gg. AA]} pushes both counters on the stack with a single transition. The
standard PDA requires two transitions and the atomic PDA three to accomplish the same
result. a

By Definition 7.1.2, an input string is accepted if there is a computation that processes
the entire string and terminates in an accepting state with an empty stack. This type of
acceptance is referred to as acceptance by final state and empty stack. Defining acceptance
in terms of the final state or the configuration of the stack alone does not change the set of
languages recognized by pushdown automaton.

A string w is accepted by final state if there is a computation [gg, w, A1 I [g;, A, a],
where g; is an accepting state and o € I'*, that is, a computation that processes the input
and terminates in an accepting state. The contents of the stack at termination are irrelevant
with acceptance by final state. A language accepted by final state is denoted Lg.

Lemma 7.2.3
Let L be a language accepted by aPDAM = (Q, E, T, 8, gg, F) with acceptance defined
by final state. Then there is a PDA that accepts L by final state and empty stack.

Proof. APDAM =(QU{gs}, T, T, &, qo, {g/)) is constructed from M by adding a
state g ¢ and transitions for ¢ ;. Intuitively, a computation in M’ that accepts a string should
be identical to one in M except for the addition of transitions that empty the stack. The
transition function §’ is constructed by augmenting § with the transitions

&(qi» M) ={lgs, A]} forallg;eF
8@y A A ={lgp, A} forallAeT.

230 Chapter 7 Pushdown Automata and Context-Free Languages

Let [gy, w, A]1¥s [g:. A, @] be a computation of M accepting w by final state. In M/, this
computation is completed by entering the accepting state g and emptying the stack

(90, w, A]
K lgiv A @]
be [g5s 4. @]
Re gz, A, Al

showing that w is accepted in M.

‘We must also guarantee that the new transitions do not cause M’ to accept strings that are
not in L(M). The sole accepting state of M’ is g ¢, which can be entered only on a transition
from any accepting state of M. Since the transitions for g+ do not process input, entering
q ¢ with unprocessed input results in an unsuccessful computation. Consequently, a string
w is accepted by M’ only if there is computation in M that processes all of w and halts in
an accepting state of M. That is, w € L(M’) only when w € L(M) as desired. |

A string w is said to be accepted by empty stack if there is a computation [¢gg, w, A] -
[g;, A, A]. No restriction is placed on the halting state ¢;. When acceptance is defined by
empty stack, it is necessary to require at least one transition to permit the acceptance of
languages that do not contain the null string. The language accepted by empty stack is
denoted Lg(M).

Lemma 7.2.4

Let L be a language accepted by a PDAM = (Q, X, T, 8, gg) with acceptance defined
by empty stack. Then there is a PDA that accepts L by final state and empty stack.

Proof. Let M'=(QU{qy), Z, T, &, qg Q), where 8'(g;, x, A)=46(g;, x, A) and
8'(qq, x, A)=23(qo, x, A) forevery g; €Q, x € LT U{A}, and A € ' U {4}. Every state
of the original machine M is an accepting state of M'.

The computations of M and M’ are identical except that those of M begin in state g
and M’ in state g;. A computation of length one or more in M’ that halts with an empty stack
also halts in a final state. Since g is not accepting, the null string is accepted by M’ only if
it is accepted by M. Thus, L(M') = Lg(M). |

Lemmas 7.2.3 and 7.2.4 show that a language accepted by cither final state or empty
stack alone is also accepted by final state and empty stack. Exercises 8 and 9 establish
that any language accepted by final state and empty stack is accepted by a pushdown
automaton using the less restrictive forms of acceptance. These observations yield the
following theorem.

Theorem 7.2.5

The following three conditions are equivalent:
i) The language L is accepted by some PDA.
ii) There is a PDA M, with Lg(M,) =L.

iii) There is a PDA M, with Lg(M,) =L.

7.2 Variations on the PDA Theme 231

We have considered alternatives to the standard PDA model obtained by changing the
acceptance criteria and the form of the transitions. Another common modification is to
assume that there is a distinguished element that marks the bottom of the stack. A bottom
marker can be read but not popped from the stack. Reading the bottom marker allows the
machine to recognize an empty stack and act accordingly. The following example illustrates
the role of a bottom marker and shows how it can be simulated in a standard PDA.

Example 7.2.2
The pushdown automaton M defined by the transitions

accepts strings that have the same number of a’s and b’s. The stack symbol Z plays the role
of a bottom marker; it is placed on the stack with the first transition and remains throughout
the computation.

The stack records the difference in the number of a’s and b’s that have been read. The
stack will contain n A’s if the automaton has processed n more a’s than b’s. Similarly, the
number of B’s on the stack indicates the number of b’s in excess of the number of a’s that
have been processed. The bottom marker Z is read when the same number of a’s and b’s
have been processed. The computation

[gg. abba, A]
(g4, abba, Z]
+[g2, bba, Z]
F (g1, bba, AZ]
F [ql- ba» Z]

- [q:h a, Z]
F (g1, a, BZ]
'_ [qlv }\’ Z]

- [44, l7 l]

232 Chapter 7 Pushdown Automata and Context-Free Languages

exhibits the acceptance of abba. When an a is read with an A or Z on the top of the stack,
an A is added to the stack by the transitions to g, and back te g;. If the stack top is a B, the
stack is popped in g, since reading the a decreases the difference between the number of
b’s and a’s that have been processed. A similar strategy is employed when a b is read.
The lone accepting state of the automaton is g,. If the input string has the same number
of a’s and b’s, the transition to ¢4 pops the Z and terminates the computation. o

The variations of pushdown automata that accept the same family of languages illustrate
the robustness of acceptance using a stack memory. In the next section we show that the
languages accepted by pushdown automata are precisely those generated by context-free
grammars.

Acceptance of Context-Free Languages

In Chapter 6 we showed that the languages generated by regular grammars were precisely
those accepted by DFAs. In this section we continue the relationship between grammatical
generation and mechanical acceptance of languages. The characterization of pushdown au-
tomata as acceptors of context-free languages is obtained by establishing a correspondence
between computations of a PDA and derivations in a context-free gramrmar.

First we prove that every context-free language is accepted by an extended PDA. To
accomplish this, the rules of the grammar are used to generate the transitions of an equivalent
PDA. Let L be a context-free language and G a grammar in Greibach normal form with
L(G) = L. The rules of G, except for S — A, have the form A - aAA;... A,. Ina
leftmost derivation, thc variables A; must be processed in a Icft-to-right manner. Pushing
AjA, ... A, onto the stack stores the variables in the order required by the derivation.
The PDA has two states: a start state g and an accepting state ¢,. An S rule of the form
S — aAjA, ... A, generates a transition that processes the terminal symbol a, pushes the
variables A4, . . . A, onto the stack, and enters state ¢;. The remainder of the computation
uses the input symbol and the stack top to determine the appropriate transition.

The Greibach normal form grammar G that accepts {a’b’ | i > 0} is used to illustrate
the construction of an equivalent PDA.

G: S — aAB |aB

A — aAB|aB
B->b
The transition function of the equivalent PDA is defined directly from the rules of G.
b B/A
8(gq, a, X) ={lq;, AB], [4;. B aA/B
(g0, a. X) = {[q), AB] [4;. B} v
8(q1» a, A) ={lq:, AB], [q, B]} a\/B .

8(q1, b, B) = {[q), Al} @ a\/AB @

7.3 Acceptance of Context-Free Languages 233

The computation obtained by processing aaabbb exhibits the correspondence between
derivations in the Greibach normal form grammar and computations in the associated PDA.

S=aAB [40, aaabbb, A1+ [q,, aabbb, AB]
= agaABB + [q,, abbb. ABB]
= aaaBBB V [41, bbb, BBB]
= aaabBB - [gy, bb, BB]
=> aaabbB t[g,. b. B]
= aaabbb F g1, A, A]

The derivation generates a string consisting of a prefix of terminals followed by a suffix
of variables. Processing an input symbol corresponds to its generation in the derivation. The
stack of the PDA contains the variables in the derived string. This strategy for the generation
of a PDA equivalent to a Greibach normal form grammar is formalized in Theorem 7.3.1
to show that every context-free language is accepted by a PDA.

Theorem 7.3.1
Let L be a context-free language. Then there is a PDA that accepts L.

Proof. LetG=(V, I, P, S) be a grammar in Greibach normal form that generates L.
The extended PDA M with start state gg defined by

Qm = {90, 1}
EM=E
Ty=V —{5)
Fu={q}
and transitions
8(gq, a, Ay = {[g;, w]l| § = aw € P}
8(qy,a, A)={lg;, w]| A= awePand AecV —{(S}}
8(gos A, A) ={[g), A}if S> A1 €P
accepts L.

We first show that L € L(M). Let S = uw be a derivation with u € % and w € V*.
We will prove that there is a computation

[qO’ u, A'] 'L [(Ih A., w]

m M. The proof is by induction on the length of the derivation and utilizes the correspon-
dence between derivations in G and computations of M.

234 Chapter 7 Pushdown Automata and Context-Free Languages

The basis consists of derivations S => aw of length one. The transition generated by
the rule S — aw yields the desired computation. Assume that for all strings uw generated
by derivations S = uw there is a computation

[qu u, A']F [q]s A" w]
in M.
Now let S 255 uw be a derivation with u = va € £+ and w € V*. This derivation can
be written

S —L‘-} 'Usz = uw,

where w = wyw, and A — aw is a rule in P. The inductive hypothesis and the transition
[¢1. wi] € 8(qy, a, A) combine to produce the computation

[qOo va, A.] F [‘11, a, AwZ]
+ [ql’)., wlwz].

For every string u in L of positive length, the acceptance of u is exhibited by the
computation in M corresponding to the derivation S = u. If A € L, then S — X is a rule
of G and the computation [gg, A, A]F [g;, A, A]accepts the null string.

The opposite inclusion, L(M) C L, is established by showing that for every computa-
tion [gg, #, AlF-[g;, A, w]there is a corresponding derivation § => uw in G. The proof
is by induction on the number of transitions in a computation and is left as an exercise. ®

To complete the characterization of context-free languages as precisely those accepted
by pushdown automata, we must show that every language accepted by a PDA is context-
free. The rules of a context-free grammar are constructed from the transitions of the
automaton so that the application of a rule corresponds to a transition in the computation in
the PDA. To simplify the proof, we divide the presentation into four stages:

1. The addition of transitions to the PDA so that each string in the language is accepted
by a computation in which every transition both pops and pushes the stack;

2. The construction of the rules of a grammar from the modified PDA;

3. The presentation of an example that illustrates the correspondence between computa-
tions of the PDA and derivations of the grammar;

4. Finally, the formal proof that the language of the grammar and the PDA are the same.

The first two steps are constructive—adding transitions and building rules. The final step
is accomplished by Lemmas 7.3.3 and 7.3.4, which show that the rules generate exactly
the strings accepted by the PDA. We start with an arbitrary PDA M and show that L(M) is
context-free. The proof begins by modifying M so that the transitions can be converted to
rules.

LetM=(Q, =, T, 8, gy, F)beaPDA. Anextended PDA M’ with transition function
&’ is obtained from M by augmenting & with the transitions

7.3 Acceptance of Context-Free Languages 235

i) If [¢;, A] € 8(g;, u, A), then [g;, Al € 8'(g;, u, A) forevery AeT.
ii) If [q;, Bl € 8(g;, u, A), then [, BA] € &'(g;, u, A) forevery A€T.

The interpretation of these transitions is that a transition of M that does not remove an
element from the stack can be considered to initially pop the stack and later replace the same
symbol on the top of the stack. Any string accepted by a computation that utilizes a new
transition can also be obtained by applying the original transition; hence, L(M) = L(M’).

A grammar G = (V, Z, P, §) is constructed from the transitions of M'. The alphabet
of G is the input alphabet of M'. The variables of G consist of a start symbol S and objects of
the form (g;, A, ¢;) where the g’s are states of M and A € I" U {A}. The variable (g;, A, ¢;)
represents a computation that begins in state g;, ends in g ;, and removes the symbol A from
the stack. The rules of G are constructed as follows:

[

. §— (4o, A, g;) foreachg; € F.
. Each transition [g, B] € 8'(g;, x, A), where A € T" U {A}, generates the set of rules

(S8

Ugi, A, gx) = x(g;. B, qx) | g € Q).

3. Each transition [q;, BA] € &'(g;. x, A), where A € T, generates the set of rules

{(gis A, qi) = x(q), B, 4,)(dns A. 1) | 4i» G0 € Q).

4. For each state g; € Q,

(qrs A5 qi) = A

A dcerivation begins with arule of type 1 whose right-hand side represents a computation
that begins in state g, ends in a final state, and terminates with an empty stack, in other
words, a successful computation in M’. Rules of types 2 and 3 trace the action of the
machine. Rules of type 3 correspond to the extended transitions of M'. In a computation,
these transitions increase the size of the stack. The effect of the corresponding rule is to
introduce an additional variable into the derivation.

Rules of type 4 are used to terminate derivations. The rule (g, A, g;) — A represents a
computation from a state g, to itself that does not alter the stack, that is, the null computation.

Example 7.3.1
A grammar G is constructed from the PDA M. The language of M is the set {a"ch" | n > 0}.

M:Q={g0. q1} 8(q0, a, }) ={lg0, Al}
T={a,b.c} 8(gp.c.)) ={lgs. A}}
I ={A} 8(q1, b, A) = {[q1, A1}
F={q)

236 Chapter 7 Pushdown Automata and Context-Free Languages

The transitions 8'(¢q. a, A) = {[gg, AA]} and &'(gy, ¢, A) = {[g,, A]} are added to M
to construct M'. The rules of the equivalent grammar G and the transition from which they

were constructed are

Transition

Rule

8(q0, a. A) = {[g0, Al}

8(qq. a, A) = {[qq, AA]}

S(qO’ ¢, A)= {[Qb A]}

S(q()’ ¢, A)= {rql’ A]}

5(‘71, b’ A) = {[QI, A’]}

S d (qO’ }'v 41)
{d0> X+ g0) = alqo. A. qu)
{90, X, q1) = algy. A. q1)

(g0, A, 40) — a{qo, A. 90){(q0. A, 90)
(g0, A, q1) — algo, A, 90}{q0. A, q1)
{d0» A, do) — a(q0, A, g1)(q1. A, q0)
(g0 A, q\) — algo, A, 9){q1, A, q1)

(90, &, q0) — clg1. A, a@y)
{90, A, q1) = ¢lq1. A, q))

(qO’ A, 110) - C(ql' A, qO)
(g0, A, q1) = ¢clq. A q1)

{91, A, q0) = blg). A, q0)
(g1, A, @) = blay, A, q1)

(g0, Ay g0) = 4
(qls A’Q 41) —>A o

The relationship between computations in a PDA and derivations in the associated
grammar are demonstrated using the grammar and PDA of Example 7.3.1. The derivation
begins with the application of an § rule; the remaining steps correspond to the processing
of an input symbol in M'. The first component of the leftmost variable contains the state
of the computation. The third component of the rightmost variable contains the accepting
state in which the computation will terminate. The stack can be obtained by concatenating

the second components of the variables.

[q0, aacbb, X]
- [gq, achb, A]
F [go. cbb, AA]
F (g1, bb, AA]
Flg1, b, Al

'_ [‘11,)',)‘]

S = {q0, », q1)

= algg, A, 41)

= aa(gg, A, q)(q1, A, q1)
= aac{qy, A, q1){q1, A, q1)
= aacb(q). », q1){g1, A, q1)
= aacb(q), A, q1)

= aacbb{q,, A, q;}

= aachb

7.3 Acceptance of Context-Free Languages 237

The variable (gy. A, ¢q;), obtained by the application of the S rule, indicates that a
computation from state gy to state g, that does not alter the stack is required. The result of
subsequent rule application signals the need for a computation from g to g; that removes
an A from the top of the stack. The fourth rule application demonstrates the necessity
for augmenting the transitions of M when § contains transitions that do not remove a
symbol from the stack. The application of the rule (gg, A. g1} = ¢ (g, A, g;) represents a
computation that processes ¢ without removing the A from the top of the stack.

We are now ready to prove that a language accepted by a PDA is context-free. This
result combines with Theorem 7.3.1 to establish the equivalence of string generation using
context-free rules and string acceptance by pushdown automata.

Theorem 7.3.2
Let M be a PDA. Then there is a context-free grammar G with L(G) = L(M).

The grammar G is constructed as outlined from the extended PDA M’ that is equivalent
to M. We must show that there is a derivation S = w if, and only if, [gg, w, A1 [g j» &, Alfor
some g, € F. This follows from Lemmas 7.3.3 and 7.3.4, which establish the correspondence
of derivations in G to computations in M’.

Lemma 7.3.3
If (g;, A, ;) = w where w € * and A € T U (A}, then [g;, w, All=[g;. A, A

Proof. The proof is by induction on the length of derivations of terminal strings from
variables of the form (g;, A, g;). The basis consists of derivations of strings consisting of
a single rule application. The null string is the only terminal string derivable with one rule
application. The derivation has the form (g;, A, g¢;) = A utilizing a rule of type 4. The null
computation in state g; yields [g;, A, A]F* [g;, A, A] as desired.

Assume that there is a computation [g;, v, A]F [g;, A, A] whenever (g;, A, g;) =,
Let w be a terminal string derivable from (g;, A, g;) by a derivation of length n + 1. The
first step of the derivation consists of the application of a rule of type 2 or 3. A derivation
initiated by a rule of type 2 can be written

(gi» A, q;) = u {qr. B, q)
= up = w,

where (g;, A, ;) = u (gx, B, g;) is a rule of G. By the inductive hypothesis, there is a
computation [g;, v, B]F* [g;, A, A] corresponding to the derivation (g;. B, ¢;) = 0.

The rule (g;, A, g;) = u (qi, B. q;) in G is generated by a transition [g;, Bl €
3(g;, u, A). Combining this transition with the computation established by the inductive
hypothesis yields

[qio uv, A] |_ [qk' v, B]
I'&' [qj' A't A-]'

238 Chapter7 Pushdown Automata and Context-Free Languages

If the first step of the derivation is a rule of type 3, the derivation can be written

(g5 A, qj) = U (qk> B\ 4m)(qm: A, qj»)

= w.
The corresponding computation is constructed from the transition [g,, BA] € é(g;, u, A)
and two invocations of the inductive hypothesis. n
Lemma 7.3.4

If [g;, w, A]# [g;, A, A] where A € " U {A}, then there is a derivation (g;, A, g;) = w.

Proof. The null computation from configuration [g;, A, A]is the only computation of M
that uses no transitions. The corresponding derivation consists of a single application of the
rule (g;, A, q;) = A.

Assume that every computation [g;, v, A]¥* [¢;, A, A] has a corresponding derivation
{gi» A, q;) % v in G. Consider a computation of length n + 1. A computation of the
prescribed form beginning with a nonextended transition can be written

[qiv w, A]
= [qka v, B]
"l [qj' A'! }']a

where w = uv and [gy, B] € 8(g;, u, A). By the inductive hypothesis, there is a derivation
{4k» B, q;) = v. The first transition generates the rule (g;, A, ¢;) — u (g, B, g;) in G.
Hence a derivation of w from (g;, A, g;) can be obtained by
(gi- A, q;) = u (g, B, q;)
= uv.

A computation in M’ beginning with an extended transition [¢;, BA] € 8(g;, u, A) has
the form

[g:» w, A]
- [qks v, BA.I
¥ 1gm, y, Al
'L [qjs A'v A]v
where w = uv and v = xy. The rule (g;, A, q;) = 4 (gk, B, qm)(qm. A, q;) is generated by
the first transition of the computation. By the inductive hypothesis, G contains derivations
(@ By qm) = x
(qm' Aa qj) é Y-

7.4 The Pumping Lemma for Context-Free Languages 239

Combining these derivations with the preceding rule produces a derivation of w from
(gi, A, g;) u

Proof of Theorem 7.3.2. Let w be any string in L(G) with derivation §=
(go. . q;) = w. By Lemma 7.3.3, there is a computation [gg, w, A]K; [g;, » A]ex-
hibiting the acceptance of w by M'.

Conversely, if w € L(M) = L(M’), then there is a computation [gg, w, A]F- [g i Ay A
that accepts w. Lemma 7.3.4 establishes the existence of a corresponding derivation
{g0» A, ¢;) = w in G. Since g; is an accepting state, G contains a rule S — (¢, A, ¢;).
Initiating the previous derivation with this rule generates w in the grammar G. n

E The Pumping Lemma for Context-Free Languages

The pumping lemma for regular languages, Theorem 6.6.3, showed that sufficiently long
strings in a regular language have a substring that can be repeated any number of times
with the resulting string remaining in the language. In this section we establish a pumping
lemma for context-free languages. For context-free languages, however, pumping refcrs to
simultaneously repeating two substrings. The ability to generate any context-free language
with a Chomsky normal form grammar provides the structure needed to prove the pumping
lemma,

There are two milestones in the proof of the pumping lemma. Using the properties
of derivation trecs built using the rules of Chomsky normal form grammars, we obtain a
number k such that

1. the derivation of any string of length ¥ or more must have a recursive subderivation
A= vAx, with v, x € Z*, and

2. the strings v and x can be simultaneously pumped in z with the resulting string
remaining in the language.

The relationship between the number of leaves and depth of a binary tree is used to achieve
the first milestone, and the repetition of the recursive subderivation establishes the latter.
The relationship between string length and depth of a derivation tree for Chomsky normal
form grammars is obtained in Lemma 7.4.1 and restated in Corollary 7.4.2.

Lemma 7.4.1

Let G be a context-free grammar in Chomsky normal form and A = w a derivation of
w € T* with derivation tree T. If the depth of T is #, then length(w) < 2",

Proof. The proof is by induction on the depth of the derivation trees that generate terminal
strings. Since G is in Chomsky normal form, a derivation tree of depth | that represents the
generation of a terminal string must have one of the following two forms.

240 Chapter7 Pushdown Automata and Context-Free Languages

X a

In either case, the length of the derived string is less than or equal to 2° = 1 as required.

Assume that the property holds for all derivation trees of depth 7 or less. Let A = w be
a derivation with tree T of depth » + 1. Since the grammar is in Chomsky normal form,
the derivation can be written A = BC = uv where B = u, C = v, and w = uv. The
derivation tree of A = w is constructed from Ty and T, the derivation trees of B = u
and C = v.

The trees Tp and Ty both have depth n or less. By the inductive hypothesis,
length(u) < 2"~" and length(v) < 2"\, Therefore, length(w) = length(uv) < 2". [

Corollary 7.4.2

LetG=(V, E, P, S) be a context-freec grammar in Chomsky normal form and § = w a
derivation of w € L(G). If length(w) > 2", then the derivation tree has depth at leastn + 1.

Theorem 7.4.3 (Pumping Lemma for Context-Free Languages)

Let L be a context-free language. There is a number k, depending on L, such that any string
z € L with length(z) > k can be written z = uvwxy where
i) length(vwx) <k

ii) length(v) +length(x) >0

iii) uv'wx’y €L, fori > 0.
Proof. LetG=(V, I, P, S) bea Chomsky normal form grammar that generates L and
let k = 2" with n = card(V). We show that all strings in L with length k or greater can be
decomposed to satisfy the conditions of the pumping lemma. Let z € L(G) be such a string
and let S =5 z be a derivation in G. By Corollary 7.4.2, there is a path of length at least
n + 1= card(V) + 1in the dcrivation tree of § = z.

Let p be a path of maximal length from the root S to a leaf of the derivation tree.
Then p must contain at least n + 2 nodes, all of which are labeled by variables except the

7.4 The Pumping Lemma for Context-Free Languages 241

leaf node, which is labeled by a terminal symbol. The pigeonhole principle guarantees that
some variable A must occur twice in the final n + 2 nodes of this path. Although A may
appear more than twice in the path, we will be concerned only with its last and next to last
occurrence in p.

Translating the properties of a path in the derivation tree to subderivations, the deriva-
tion of z can be depicted

S

rl /‘L\ "
/\ /"\ /\
u v /w\ x y
—_—— N — e — N —
where z = uvwxy. The derivation § = r,Ar, produces the next to last occurrence of the
variable A. The subderivation A = vAx may be omitted or repeated any number of times
before applying A = w to halt the recursion. The resulting derivations generate the strings
uv'wx’'y e L(G) =L.
We now show that conditions (i) and (ii) in the pumping lemma are satisfied by this
decomposition. The subderivation A = vAx must begin with a rule of the form A — BC.

The second occurrence of the variable A is derived from either B or C. If it is derived from
B, the derivation can be written

A= BC
= vAsC
= vAst
= vAx.

The string ¢ is nonnull since it is obtained by a derivation from a variable in a Chomsky
normal form grammar that is not the start symbol of the grammar. It follows that x is also
nonnull. If the second occurrence of A is derived from the variable C, a similar argument
shows that v must be nonnull.

The subpath between the final two occurrences of A in the path p must be of length at
most n + 2. The derivation tree generated by the derivation A = vwx has depth of at most
n + 1. It follows from Lemma 7.4.1 that the string vw.x obtained from this derivation has
fength k = 2" or less. [|

Like its counterpart for regular languages, the pumping lemma provides a tool for
demonstrating that languages are not context-free. By the pumping lemma, every suffi-
ciently long string in a context-free grammar must have pumpable substrings. Thus we can
show that alanguage is not context-free by finding a string that has no decomposition uvwxy
that satisfies the requirement of Theorem 7.4.3.

242 Chapter7 Pushdown Automata and Context-Free Languages

Example 7.4.1

The language L = {a’bc’ | i > 0} is not context-free. Assume L is context-free. By Thco-
rem 7.4.1, the string z = a*b*c¥, where & is the number specified by the pumping lemma,
can be decomposed into substrings #uvwxy that satisfy the repetition properties. Consider
the possibilities for the substrings v and x. If either of these contains more than one type of
terminal symbol, then uv?wx2y contains a b preceding an a or a ¢ preceding a b. In either
case, the resulting string is notin L.

By the previous observation, v and .x must be substrings of one of a*, %, or c*. Since
at most one of the strings v and x is null, #v?wx?y increases the number of at least one,
maybe two, but not all three types of terminal symbols. This implies that uvZwx?y ¢ L.
Thus there is no decomposition of a*b*c* satisfying the conditions of the pumping lemma;
consequently, L is not context-free. o

Example 7.4.2

The language L = {a'b/a’b/ | i, j > 0} is not context-free. Let k be the number specified by
the pumping lemma and z = a*b*a*b*. Assume there is a decomposition vwxy of z that
satisfies the conditions of the pumping lemma. Condition (ii) requires the length of vwx to
be at most k. This implies that vwx is a string containing only one type of terminal or the
concatcnation of two such strings. That is,

1) vwx € a* or vivx € b*, or
ii) vwx € a*b* or vwx € b*a*.

By an argument similar to that in Example 7.4.1, the substrings v and x must contain only
one type of terminal. Pumping v and x increases the number of a’s or b’s in only one of
the substrings in z. Since there is no decomposition of z satisfying the conditions of the
pumping lemma, we conclude that L is not context-free. =]

Example 7.4.3

The language L = {w € a* | length(w) is prime} is not context-free. Assume L is context-
free and n a prime greater than £, the constant of Theorem 7.4.3. The string a" must
have a decomposition uvw.xy that satisfies the conditions of the pumping lemma. Let m =
length(u) + length(w) + length(y). The length of any string uv' wx'y is m + i(n — m).
In particular, length(wv™ ' wx"tly) = m + (n + 1)(n — m) =n(n — m + 1). Both of
the terms in the preceding product are natural numbers greater than 1. Consequently, the
length of uv™+'wx"+ly is not prime and the string is not in L. Thus, L is not context-free.
o

7.5 Closure Properties of Context-Free Languages 243

Closure Properties of Context-Free Languages

The flexibility of the rules of context-free grammars is used to establish closure results for
the set of context-free languages. Operations that preserve context-free languages provide
another tool for proving that languages are context-free. These operations, combined with
the pumping lemma, can also be used to show that certain languages are not context-free.

Theorem 7.5.1

The family of context-free languages is closed under the operations union, concatenation,
and Kleene star.

Proof. LetL, and L, be context-free languages generated by G, = (V,, Z;, Py, S;) and
G, = (V,, I,, Py, §,), respectively. The sets V; and V, of variables are assumed to be
disjoint. Since we may rename variables, this assumption imposes no restriction on the
grammars.

A context-free grammar will be constructed from G, and G, that establishes the desired
closure property.

Union: Define G = (V;UV,U{S}, ZyUZ,, PiUP,U{S — S| S,), S). A string w is
in L(G) if, and only if, there is a derivation $ = S; = w fori =l or 2. Thus wis in L,
or L,. On the other hand, any derivation S; => w can be initialized with the rule S — S; to
generate w in G.

Concatenation: Define G=(V, UV, U{S}, ;U X, PyUP,U{S — 5,5}, §). Thestart
symbol initiates derivations in both G; and G,. A leftmost derivation of a terminal string
in G has the form S = §,S; = uS; = uv, where u € L; and v € L,. The derivation of u
uses only rules from P and v rules from P,. Hence L(G) € LL,. The opposite inclusion
1s established by observing that every string w in L;L, can be written uv with u € L; and
v € L,. The derivations S; => u and S, => v, along with the S rule of G, generate w in G.
Kleene star: Define G = (Vl. z, Py U {S — 515 | A}, S). The S rule of G generates any
number of copies of S,. Each of these, in turn, initiates the derivation of a string in L,. The
concatenation of any number of strings from L, yields L}. [|

Theorem 7.5.1 presented positive closure results for the set of context-free languages.
A simple example is given to show that the context-free languages are not closed under
intersection. Finally, we combine the closure properties of union and intersection to obtain
a similar negative result for complementation.

Theorem 7.5.2

The set of context-free languages is not closed under intersection or complementation.
Proof. _

Intersection: Let L, = {a'b'c/ | i, j >0} and L, = {@/b'c' | i, j = 0}. L, and L, are both
context-free since they are generated by G, and G,, respectively.

244 Chapter 7 Pushdown Automata and Context-Free Languages

Gyt S— BC G, S— AB
B—>aBb|A A—>aAli
C—ocC|A B — bBc| 4

The intersection of L; and L, is the set {a'b'cf [i > 0}, which is not context-free by
Example 7.4.1.

Complementation: Let L; and L, be any two contexl-free languages. If the context-free
languages are closed under complementation, then by Theorem 7.5.1, the language

L=L,UL,

is context-free. By DeMorgan’s Law, L = L;N L,. This implies that the context-free
languages ate closed under intersection, contradicting the result of part (i).]

Exercise 9 of Chapter 6 showed that the intersection of a regular and context-free lan-
guage need not be regular. The correspondence between languages and pushdown automnata
is used to establish a positive closure property for the intersection of regular and context-free
languages.

Let R be a regular language accepted by a DFA N and L a context-free language
accepted by PDA M. We show that R N L is context-free by constructing a single PDA
that simulates the operation of both N and M. The states of this composite machine are
ordered pairs consisting of a state from M and one from N.

Theorem 7.5.3
Let R be a regular language and L a context-free language. Then the language R N L is
context-free.

Proof. LetN=(Qy, Zn. 3n, 4o, Fn) beaDFA thataccepts Randlet M = (Qp. Ty, T,
dm. Po» Fp) be a PDA that accepts L. The machines N and M are combined to construct a
PDA

M= (Qu x Q. By U By, T\, 8, [po. qol. Fy x Fy)
that accepts R N L. The transition function of M’ is defined to “run the machines M and N

in parallel.” The first component of the ordered pair traces the sequence of states entered by
the machine M and the second component by N. The transition function of M’ is defined by

i) 8(lp, q), a, A) ={l[p', 4'), B1|[p, Bl€ éy(p. a. A) and 5x(g, @) =¢'}
il) 8([’)7 q]v A‘o A) = {[[pl7 ‘1], B] I [P,, B] € 8M(pv)" A)}-

Every transition of a DFA processes an input symbol, whereas a PDA may contain tran-
sitions that do not process input. The transitions introduced by condition (ii) simulate the
action of a PDA transition that does not process an input symbol.

A string w is accepted by M’ if there is a computation

[[pos q0), w, A1F= [P, 451, X, 2],

where p; and g; are final states of M and N, respectively.

7.5 Closure Properties of Context-Free Languages 245

The inclusion L(IN) N L(M) € L(M’) is established by showing that there is a compu-
tation
[[pos g0} w, A1K: ([P g1, 4, @]

whenever

(Po, w, AlK: [piv u, @] and [qo, wlk [g;, 4]

are computations in M and N. The proof is by induction on the number of transitions in the
PDAM.

The basis consists of the null computation in M. This computation terminates with p; =
Po» ¥ = w, and M containing an empty stack. The only computation in N that terminates with
the original string is the null computation; thus, ¢; = go. The corresponding computation
in the composite machine is the null computation in M'.

Assume the result holds for all computations of M having length n. Let

[po, w, A1 k7' [piou, @] and [qo, wlkv [g;, u]
be computations in the PDA and DFA, respectively. The computation in M can be written
[po, w, A]
(o [pk9 v, ﬂ]
'_ [pi' u, a]o

where either v =u or v = qu. To show that there is a computation [[pg, gpl, w, A] K¢
[[7i, 9,1, u. a], we consider each of the possibilities for v separately.

Case 1: v = u. In this case, the final transition of the computation in M does not process
an input symbol. The computation in M is completed by a transition of the form [p;, B] €
&(py, A, A). This transition generates [[p;, ¢;1, B1€ 6([px. g;1. A, A) in M'. The compu-
tation

[[pO’ qO]' w, A'] ';.7’ [[pk, (Ij]' v, ﬂ]
b [[pis 41, v, @]
is obtained from the inductive hypothesis and the preceding transition of M'.

Case 2: v = au. The computation in N that reduces w to ¥ can be written

(g0, w]
K [gm, v]
'73 [q]’ u]v

where the final step utilizes a transition x(g,, @) = ¢;. The DFA and PDA transitions
for input symbol a combine to generate the transition [[p;, ¢;], Bl € 8([pk, gn), @, A) in

246 Chapter7 Pushdown Automata and Context-Free Languages

M'. Applying this transition to the result of the computation established by the inductive
hypothesis produces

[[pO’ 40]- w, A] I&' [[Pk, Qnt]' v, ﬂ]
'ﬁ‘ [[Pi: ‘I,], u, a]-

The opposite inclusion, L(M’) € L(N) N L(M), is proved using induction on the length
of computations in M’. The proof is left as an exercise. [|

Theorem 7.5.2 used DeMorgan’s Law to show that the family of context-frec languages
is not closed under complementation. The next example gives a grammar that explicitly
demonstrates this property.

Example 7.5.1

The language L = {ww | w € {a, b}*} is not context-free, but L is. First we show that L
is not context-free using a proof by contradiction. Assume L is context-free. Then, by
Theorem 7.5.3,

L Na*b*a*h* = {a'bla'b’ |i, j > 0}

is context-free. However, this language was shown not to be context-free in Example 7.4.2,
contradicting our assumption.

To show that L is context-free, we construct two context-free grammars G, and G, with
L(G)) UL(G,) =L.

G: S—>aA|bAla|b G,: S— AB|BA
A—>aS|bS A—ZAZ |a
B—> ZBZ|b

Z—alb

The grammar G, generates the strings of odd length over {a, b}, all of which are in L. G,
generates the set of even length string in L. Such a string may be written u;xv,u,yv,, where
x,y€ X and x #y; Uy, uy, vy, v € L* with length(u,) = length(u,) and length(v;) =
length(vy). That is, x and y are different symbols that occur in the same position in the
substrings that make up the first half and the second half of u;xvu,yv,. Since the u’s
and v’s are arbitrary strings in X*, this characterization can be rewritten «;xpgyv,, where
length(p) = length(u,) and length(q) = length(v,). The recursive variables of G, generate
precisely this set of strings. o

Exercises 247

Exercises

1. Let M be the PDA defined by

Q=1{490, 91- 92} 8(qg, a, X) = {[g0, A}

T = {a, b} 8(qo, A, A) = {[q1, A}
I ={A} 8(qg, b, A) = {lg2, Al}
F={q 2} 8(qy, Ay A) ={lgy, Al}

3(q2, b, A) ={[g2, A]}
8(ga, A, A) = {[q3, Al}.

a) Describe the language accepted by M.
b) Give the state diagram of M.
¢) Trace all computations of the strings aab, abb, aba in M.
d) Show that aabb, aaab € L(M).
2. Let M be the PDA in Example 7.1.3.
a) Give the transition table of M.
b) Trace all computations of the strings ab, abb, abbb in M.
¢) Show that aaaa, baab € L{M).
d) Show that aaa, ab ¢ L(M).
3. Construct PDAs that accept each of the following languages.
a) {a'b/ |0 <i < j)
b) {a'c/b’ |i, j = 0}
o) {a'bick i+ k= j)
d) {w|w € {a, b}* and w has twice as many a’s as b's}
e) {a'b' |i >0}Ua*Ub*
f) {a'bick |i=jorj=k)
g {a'bl |i # j)
h) {a'b/ |0 <i < j <2i}
i) {a’Hbicd i, j > 0)
j) The set of palindromes over {a, b}
4. Construct a PDA with only two stack elements that accepts the language

{wdw® | w € {a, b, c}*}.

248 Chapter 7 Pushdown Automata and Context-Free Languages

5.

10.

11.

12

Give the state diagram of a PDA M that accepts {a%»'*/ | 0 < j < i} with acceptance
by empty stack. Explain the role of the stack symbols in the computation of M. Trace
the computations of M with input aabb and aaaabb.

. The machine M

aNA b AIN
Al e
accepts the language L = {a’b’ | i > 0} by final state and empty stack.

a) Give the state diagram of a PDA that accepts L by empty stack.
b) Give the state diagram of a PDA that accepts L by final state.

. Let L be the language {w € {a, b}* | w has a prefix containing more b’s than a’s}. For

example, baa, abba, abbaaa € L, but aab, aabbab ¢ L.
a) Construct a PDA that accepts L by final state.
b) Construct a PDA that accepts L by empty stack.

. LetM =(Q, &, T, §, gy, F) be a PDA that accepts L by final state and empty stack.

Prove that there is a PDA that accepts L by final state alone.

. Let M =(Q, Z, T, 4, gy, F) be a PDA that accepts L by final state and empty stack.

Prove that there is a PDA that accepts L by empty stack alone.

LetL = {a®b' | i > O}.

a) Constructa PDA M, with L(M;) =L.

b) Construct an atomic PDA M, with L(M;) =L.

c¢) Construct an extended PDA M3 with L(Mj3) = L that has fewer transitions than M.

d) Trace the computation that accepts the string aab in each of the automata con-
structed in parts (a), (b), and (c).

LetL = {a®b¥ |i > 0}.

a) Construct a PDA M, with L(M,) =L.

b) Construct an atomic PDA M, with L(M,) =L.

c) Construct an extended PDA M5 with L(Mj3) = L that has fewer transitions than M.

d) Trace the computation that accepts the string aabbb in each of the automata con-
structed in parts (a), (b), and (c).

Use the technique of Theorem 7.3.1 to construct a PDA that accepts the language of
the Greibach normal form grammar

S —>aABA|aBB
A—>bA|b
B —c¢B|c.

13.

14.

v 16.

17.

Exercises 249

Let G be a grammar in Greibach normal form and M the PDA constructed from G.
Prove that if [gg, #, A]¥ [g;, A, w]in M, then there is a derivation § = yw in G.
This completes the proof of Theorem 7.3.1.

Let M be the PDA
Q=1{40.91. 92} (g0, a. }) = {[g0. AL}

T ={a, b} 8(qg. b, A) = {[g;, A1}
I ={A} 8(qy, b, M) ={[g2. A1}
F ={g,} 8(q2, b, A) ={lg,, A]}).

a) Give the state diagram of M.
b) Give a set-theoretic definition of L(M).

c) Using the technique from Theorem 7.3.2, build a context-free grammar G that
generates L(M).

d) Trace the computation of aabbbb in M.
e) Give the derivation of aabbbb in G.

. Let M be the PDA in Example 7.1.1.

a) Trace the computation in M that accepts bbcbb.
b) Use the technique from Theorem 7.3.2 to construct a grammar G that accepts L(M).
¢) Give the derivation of bbcbb in G.

Theorem 7.3.2 presented a technique for constructing a grammar that generates the
language accepted by an extended PDA. The transitions of the PDA pushed at most two
variables onto the stack. Generalize this construction to build grammars from arbitrary
extended PDAs. Prove that the resulting grammar generates the language of the PDA.

Use the pumping lemma to prove that each of the following languages is not context-
free.

a) {a* | k is a perfect square}

b) (a'bictdl |i, j >0}

c) {a'b¥a’|i > 0)

d) {@'bick|0<i < j<k<zi}

e) {wwfw|w e {a, b}*}

f) The set of finite-length prefixes of the infinite string

abaabaaabaaaab . . .ba"ba"t'b

. a) Prove that the language L; = {a'b¥¢/ | i, j > 0} is context-free.

b) Prove that the language L, = {a/b'c¥ | i, j > 0} is context-free.
c) Prove that LyN L, is not context-free.

250 Chapter7 Pushdown Automata and Context-Free Languages

19.

20.

21,

*22.

23.

a) Prove that the language L, = {a'b'c/d/ | i, j > 0} is context-free.
b) Prove that the language L, = {a/b'c'd* | i, j, k > 0} is context-free.
¢) Prove that L;N L is not context-free.

Let L be the language consisting of all strings over {a, b} with the same number of a’s
and b’s. Show that the pumping lemma is satisfied for L. That is, show that every string
z of length & or more has a decomposition that satisfies the conditions of the pumping
lemma.

Let M be a PDA. Prove that there is a decision procedure to determine whether
a) L(M) is empty.

b) L(M) is finite.

c¢) L(M) is infinite.

A grammar G = (V, X, P, 5) is called linear if every rule has the form

A—>u
A— uBv

where 1, v € £* and A, B € V. A language is called linear if it is generated by a linear
grammar. Prove the following pumping lemma for linear languages.
Let L be a linear language. Then there is a constant & such that for all z € L with

length(z) > k, z can be written z = uvwxy with

i) length(uuxy) <k,

i) lengrh(vx) > 0, and
iii) uv'wx’y e L, fori > 0.
a) Construct a DFA N that accepts all strings in {a, b}* with an odd number of a’s.
b) Construct a PDA M that accepts {4 | i > 0}.

c) Use the technique from Theorem 7.5.3 to construct a PDA M’ that accepts
L(N) NL(M).

d) Trace the computations that accept aaab in N, M, and M'.

. Let G =(V, Z, P, S) be a context-free grammar. Define an extended PDA M as
follows:
Q={go} 8(40, 2, 2) = {[g0. ST
L=1g 3(40, A, A) = {[g0, w]| A > w € P}
r=%3guUVv 8(qg, a, a) = {[qp,]| a € T}.
F = {q}

Prove that L(M) = L(G).

25. Complete the proof of Theorem 7.5.3.

v 28.

30.

Bibliographic Notes 251

. Prove that the set of context-free languages is closed under reversal.
. LetL be a context-free language over £ and a € X. Define er,(L) to be the set obtained

by removing all occurrences of a from strings of L. The language er (L) is the language
L with g erased. For example, if abab, bach, aa € L, then bb, bcb, and A € er,(L).
Prove that er,(L) is context-free. Hint: Convert the grammar that generates L to one
that generates er,(L).

The notion of a string homomorphism was introduced in Exercise 6.19. Let L be a
context-free language over T and let 4 : £* — X * be a homomorphism.

a) Prove that A(L) = {h(w) | w € L} is context-free, that is, that the context-free
languages are closed under homomorphisms.

b) Use the result of part (a) to show that er,(L) is context-free.

c) Give an example to show that the homomorphic image of anoncontext-free language
may be context-free.

. Leth : £* — X* be a homomorphism and L a context-free language over Z. Prove that

{w | h(w) € L} is context-free. In other words, the family of context-free languages is
closed under inverse homomorphic images.

Use closure under homomorphic images and inverse images to show that the following
languages are not context-free.

a) {a@'bicid/ |i, j =0}
b) {a'b¥c¥ |i >0}
c) {(ab) (bc) (ca)’ |i > 0}

Bibliographic Notes

Pushdown automata were introduced in Oettinger [1961]. Deterministic pushdown au-
tomata were studied in Fischer [1963] and Schutzenberger [1963] and their acceptance
of the languages generated by LR(k) grammars is from Knuth [1965]. The relationship be-
tween context-free languages and pushdown automata was discovered by Chomsky [1962],
Evey [1963], and Schutzenberger [1963]. The closure properties for context-free languages
presented in Section 7.5 are from Bar-Hillel, Perles, and Shamir [1961] and Scheinberg
[1960]. A solution to Exercises 28 and 29 can be found in Ginsburg and Rose [1963b].

The pumping lemma for context-free languages is from Bar-Hillel, Perles, and Shamir

{1961]. A stronger version of the pumping lemma is given in Ogden [1968]. Parikh’s
Theorem [1966] provides another tool for establishing that languages are not context-free.

i
i
%
:
2

PART 11l

Computability

e now begin our exploration of the capabilities and limitations of algorithmic compu-

tation. The term effective procedure is used to describe processes that we intuitivcly
understand as computable. An effective procedure consists of a finite set of instructions
and a specification, based on the input, of the order of execution of the instructions. The
execution of an instruction is mechanical; it requires no cleverness or ingenuity on the part
of the machine or person doing the computation. A computation produccd by an effective
procedure executes a finite number of instructions and terminates. The preceding properties
can be summarized as follows: An effective procedure is a deterministic discrete process
that halts for all possible inputs.

In 1936 British mathematician Alan Turing designed a family of abstract machines
for performing effective computation. The Turing machine represents the culmination
of a series of increasingly powerful abstract computing devices that include finite and
pushdown automata. As with a finite automaton, the applicable Turing machine instruction
5 determined by the state of the machine and the symbol being rcad. A Turing machine
may read its input multiple times and an instruction may write information to memory. The
sbility to perform multiple reads and writes increases the computational power of the Turing
machine and provides a theoretical prototype for the modern computer.

The Church-Turing Thesis, proposed by logician Alonzo Church in 1936, asserts that
any effective computation in any algorithmic system can be accomplished using a Turing
machine. The Church-Turing Thesis should not be considered as providing a definition of
algorithmic computation—this would be an extremely limiting viewpoint. Many systems
have been designed to perform effective computations. Moreover, who can predict the
formalisms and techniques that will be developed in the future? The Church-Turing Thesis
Joes not claim that these other systems do not perform algorithmic computation. It does,
Bowever, assert that a computation performed in any such system can be accomplished
by a suitably designed Turing machine. Perhaps the strongest evidence supporting the
Church-Turing Thesis is that after 70 years, no counterexamples have been discovered. The
formulation of this thesis and its implications for computability are discussed in Chapter 11.

The correspondence between the generation of languages by grammars and their recog-
nition by machines extends to the languages of Turing machines. If Turing machines repre-
sent the ultimate in string recognition machines, it seems reasonable to expect the associated
family of grammars to be the most general string transformation systems. This is indeed the
case; the grammars that correspond to Turing machines are called unrestricted grammars
because there are no restrictions on the form or the applicability of their rules. To establish
the correspondence between recognition by a Turing machine and generation by an unre-
stricted grammar, we show that a computation of a Turing machine can be simulated by a
derivation in an unrestricted grammar.

With the acceptance of the Church-Turing Thesis, the extent of algorithmic problem
solving can be identificd with the capabilities of Turing machine computations. Conse-
quently, to prove a problem to be unsolvable, it suffices to show that there is no Turing
machine solution to the problem. Using this approach, we show that the Halting Problem
for Turing machines is undecidable. That is, there is no algorithm that can determine, for
an arbitrary Turing machine M and string w, whether M will halt when run with w. We
will then use problem reduction to establish undecidability of additional questions about
the results of Turing machine computations, of the existence of derivations using the rules
of a grammar, and of properties of context-free languages.

> X e

CHAPTER 8

Turing Machines

The Turing machine, introduced by Alan Turing in 1936, represents another step in the
development of finite-state computing machines. Turing machines were originally proposed
for the study of effcctive computation and exhibit many of the features commonly associated
with a modern computer. This is no accident; the Turing machine provided a model for the
design and development of the stored-program computer. Utilizing a sequence of elementary
aperations, a Turing machine may access and alter any memory position. A Turing machine,
anlike a computer, has no limitation on the amount of time or memory available for a
Somputation.

The Church-Turing Thesis, which will be discussed in detail in Chapter 11, asserts
Hat any effective procedure can be realized by a suitably designed Turing machine. The
saiations of Turing machine architectures and applications presented in the next two
hapters indicate the robustness and the versatility of Turing machine computation.

BE The standard Turing Machine

A Turing machine is a finite-state machine in which a transition prints a symbol on the tape.
Tbe tape head may move in either direction, allowing the machine to read and manipulate
e input as many times as desired. The structure of a Turing machine is similar to that of
1 finite automaton, with the transition function incorporating these additional features.

255

256 Chapter 8 Turing Machines

Definition 8.1.1

A Turing machine is a quintuple M = (Q, X, T, &, gy) where Q is a finite set of states,
T is a finite set called the tape alphabet, ' contains a special symbol B that represents a
blank, X is a subset of I' — { B} called the input alphabet, § is a partial function from Q x I’
to Q x I" x {L, R} called the rransition function, and ¢, € Q is a distinguished state called
the start state.

The tape of a Turing machine has a left boundary and extends indefinitely to the right.
Tape positions are numbered by the natural numbers, with the leftmost position numbered
zero. Each tape position contains one element from the tape alphabet.

012345...
[[alb[b]a] |]

A computation begins with the machine in state g and the tape head scanning the leftmost
position. The input, a string from T*, is written on the tape beginning at position one.
Position zero and the remainder of the tape are blank. The diagram shows the initial
configuration of a Turing machine with input abba. The tape alphabet provides additional
symbols that may be used during a computation.

A transition consists of three actions: changing the state, writing a symbol on the square
scanned by the tape head, and moving the tape head. The direction of the movement is
specified by the final component of the transition. An L indicates a move of one tape position
to the left and R one position to the right. The machine configuration

HEEEE

and transition &(g;, x) = [g;, y, L] combine to produce the new configuration

LT

The transition changed the state from g; to g ;, replaced the tape symbol x with y, and moved
the tape head one square to the left. The ability of the machine to move in both directions
and process blanks introduces the possibility of a computation continuing indefinitely.

8.1 The Standard Turing Machine 257

A computation halts when it encounters a state, symbol pair for which no transition is
defined. A transition from tape position zero may specify a move to the left of the boundary
of the tape. When this occurs, the computation is said to rerminate abnormally. When we
say that a computation halts, we mean that it terminates in a normal fashion.

The Turing machine presented in Definition 8.1.1 is deterministic, that is, at most
one transition is specified for every combination of state and tape symbol. The one-tape
deterministic Turing machine, with initial conditions as described above, is referrcd to as the
standard Turing machine. The first two examples demonstrate the use of Turing machines
to manipulate strings. After developing a facility with Turing machine computations, we
will use Turing machines to accept languages and to compute functions.

Example 8.1.1

The tabular representation of the transition function of a standard Turing machine with input
alphabet {a, b} is given in the table below.

) B a b

q0 | 91.B.R

q 92, B, L q. bv R gy, a, R
9 g, a, L 4, b, L

The transition from state gy moves the tape head to position one to read the input. The
transitions in state ¢, read the input string and interchange the symbols g and b. The
mransitions in g, return the machine to the initial position.

A Turing machine can be graphically represented by a state diagram. The transition
3(q;, x) =g, ¥, d], d € {L, R} is depicted by an arc from g; to g; labeled x/y d. The
state diagram

alb R alaL
blaR bibL

@ B/BR % B/B L 8

represents the Turing machine defined in the preceding transition table. o

A machine configuration consists of the state, the tape, and the position of thc tape
bead. At any step in a computation of a standard Turing machine, only a finite segment of
the tape is nonblank. A configuration is denoted uq; v B, where all tape positions to the right
of the B are blank and uv is the string spelled by the symbols on the tape from the left-
hand boundary to the B. Blanks may occur in the string «v; the only requirement is that the

258 Chapter8 Turing Machines

entire nonblank portion of the tape be included in uv. The notation ug;v B indicates that the
machine is in state g; scanning the first symbol of v and the entire tape to the right of uvB
is blank.

This representation of machine configurations can be used to trace the computations
of a Turing machine. The notation ug;v B kg xq;y B indicates that the configuration xq;y B
is obtained from ug;vB by a single transition of M. Following the standard conventions,
uq;vB K xq;yB signifies that xq;yB can be obtained from ug;vB by a finite number,
possibly zero, of transitions. The reference to the machine is omitted when there is no
possible ambiguity.

The Turing machine in Example 8.1.1 interchanges the a’s and &’s in the input string.
Tracing the computation generated by the input string abab yields

qoBababB
- BqiababB
- Bbg,babB
F Bbag,abB
+ Bbabg,bB
- Bbabaq,B
- Bbabg,aB
+ Bbag,baB
F Bbg,abaB
+ BgsbabaB
F gyBbabaB.

The Turing machine from Example 8.1.1 made two passes through the input string.
Moving left to right, the first pass interchanged the a’s and b’s. The second pass, going
right to left, simply returned the tape head to the leftmost tape position. The next example
shows how Turing machine transitions can be used to make a copy of a string. The ability
to copy data is an important component in many algorithmic processes. When copies are
necded, the strategy employed be this machine can by modified to suit the type of data
considered in the particular problem.

Example 8.1.2

The Turing machine COPY with input alphabet {«, b} produces a copy of the input string.
That is, a computation that begins with the tape having the form Bu B terminates with tape
BuBuB.

8.2 Turing Machines as Language Acceptors 259

X/XR
Yy

X/aL
Yib L

The computation copies the input string one symbol at a time beginning with the leftmost
symbol in the input. Tape symbols X and Y record the portion of the input that has been
copied. The first unmarked symbol in the string specifies the arc to be taken from state
2. The cycle g1, 42, g3, ¢4, g1 replaces an @ with X and adds an a to the string being
constructed. Similarly, the lower branch copies a b using Y to mark the input string. After
the entire string has been copied, the transitions in state g7 change the X’s and Y’s to @’s
and b’s and return the tape head to the initial position. a]

Turing Machines as Language Acceptors

Turing machines have been introduced as a paradigm for effective computation. A Turing
machine computation consists of a sequence of elementary operations determined from the
machine state and the symbol being read by the tape head. The machines constructed in the
orevious section were designed to illustrate the features of Turing machine computations.
The computations read and manipulated the symbols on the tape; no interpretation was given
o the result of a computation. Turing machines can be designed to accept languages and to
<ompute functions. The result of a computation can be defined in terms of the state in which
the computation terminates or the configuration of the tape at the end of the computation.

In this section we consider the use of Turing machines as language acceptors; a
Somputation accepts or rejects the input string. Initially, acceptance is defined by the final
state of the computation. This is similar to the technique used by finite-state and pushdown
momata to accept strings. Unlike finite-state and pushdown automata, a Turing machine
seed not read the entire input string to accept the string. A Turing machine augmented with
2mal states is a sextuple (Q, X, T, 8, gy, F), where F C Q is the set of final statcs.

260 Chapter8 Turing Machines

Definition 8.2.1

LetM=(Q, I, I', &, qg, F) be a Turing machine. A string ¥ € X* is accepted by final
state if the computation of M with input # halts in a final state. A computation that terminates
abnormally rejects the input regardless of the state in which the machine halts. The language
of M, denoted L(M), is the set of all strings accepted by M.

A language accepted by a Turing machine is called a recursively enumerable lan-
guage. The ability of a Turing machine to move in both directions and process blanks
introduces the possibility that the machine may not halt for a particular input. Thus there are
three possible outcomes for a Turing machine computation: It may halt and accept the input
string; halt and reject the string; or it may not halt at all. Because of the last possibility, we
will sometimes say that a machine M recognizes L if it accepts L but does not necessarily
halt for all input strings. The computations of M identify the strings L but may not provide
answers for strings not in L.

A language accepted by a Turing machine that halts for all input strings is said to be
recursive. Membership in a recursive language is decidable; the computations of a Turing
machine that halts for all inputs provide a procedure for determining whether a string is
in the language. A Turing machine of this type is sometimes said to decide the language.
Being recursive is a property of a language, not of a Turing machine that accepts it. There
are multiple Turing machines that accept a particular language; some may halt for all input,
whereas others may not. The existence of one Turing machine that halts for all inputs is
sufficient to show that the membership in the language is decidable and the language is
recursive.

In Chapter 12 we will show that there are languages that are recognized by a Turing
machine but arc not decided by any Turing machine. It follows that the set of recursive
languages is a proper subset of the recursively enumerable languages. The terms recursive
and recursively enumerable have their origins in the functional interpretation of Turing
computability that will be presented in Chapter 13.

Example 8.2.1
The Turing machine M

M:

8.2 Turing Machines as Language Acceptors 261

accepts the language (a U b)*aa(a U b)*. The computation
qoBaabbB
F Bg,aabbB
+ Bag,abbB
+ BaagsbbB

examines only the first half of the input before accepting the string aabb. The language
(a U b)*aa(a U b)* is recursive; the computations of M halt for every input string. A suc-
cessful computation terminates when a substring aa is encountered. All other computations
halt upon reading the first blank following the input. u]

Example 8.2.2
The language L = {a’bc’ | i > 0} is accepted by the Turing machine

alaL
b/bL
YIYL
ZIZL

The tape symbols X, Y,and Z mark thea’s, b’s, and ¢’s as they are matched. A computation
saccessfully terminates when all the symbols in the input string have been transformed to
the appropriate tape symbol. The transition from g, to g¢ accepts the null string.

262 Chapter8 Turing Machines

The Turing machine M shows that L is recursive. The computations for strings in L
halt in gg. For strings not in L, the computations halt in a nonaccepting state as soon as
it is discovered that the input string does not match the pattern a’b’c’. For example, the
computation with input bca halts in ¢; and with input abb in g3. o

Alternative Acceptance Criteria

Using Definition 8.2.1, the acceptance of a string by a Turing machine is determined by
the state of the machine when the computation halts. Alternative approaches to defining
acceptance are presented in this section.

The first alternative is acceptance by halting. In a Turing machine that is designed to
accept by halting, an input string is accepted if the computation initiated with the string
halts. Computations for which the machine terminates abnormally reject the string. When
acceptance is defined by halting, the machine is defined by the quintuple (Q, X, T, 4§, gq).
The final states are omitted since they play no role in the determination of the language of
the machine.

Definition 8.3.1

LetM=(Q, =, T, 8, ¢,) be a Turing machine. A string u € * is accepted by halting
if the computation of M with input « halts (normally).

Turing machines designed for acceptance by halting are used for language recognition.
The computation for any input not in the language will not terminate. Theorem 8.3.2 shows
that any language recognized by a machine that accepts by halting is also accepted by a
machine that accepts by final state.

Theorem 8.3.2
The following statements are equivalent:

i) The language L is accepted by a Turing machine that accepts by final state,
ii) The language L is accepted by a Turing machine that accepts by halting.
Proof. LetM =(Q, X, T, &, qp) be a Turing machine that accepts L by halting. The
machine M'=(Q, Z, T, &, ¢, Q),in which every state is a final state, accepts L by final
state.

Conversely, let M =(Q, Z, T, 8, gq. F) be a Turing machine that accepts the lan-
guage L by final state. Define the machine M’ = (QU {g,}, Z, T, &', g) that accepts by
halting as follows:

i) If 8(g;, x) is defined, then &'(g;, x) = 8(g;, x).
ii) For each state ¢; € Q —F, if (g;, x) is undefined, then §'(g;, x) = [g,, x, R].
iii) Foreachx €T, §'(g,, x) =g, x, R].

8.4 Multitrack Machines 263

Computations that accept strings in M and M’ are identical. An unsuccessful computation
in M may halt in a rejecting state, terminate abnormally, or fail to terminate. When an
unsuccessful computation in M halts, the computation in M’ enters the state g,. Upon
entering ¢,, the machine moves indefinitely to the right. The only computations that halt in
M’ are those that are generated by computations of M that halt in an accepting state. Thus
LM =LM). |

Example 8.3.1

The Turing machine from Example 8.2.1 is altered to accept (a U b)*aa(a U b)* by halting.
The machine below is constructed as specified by Theorem 8.3.2. A computation enters g,
when the entire input string has been read and no aa has been encountered.

b/bR

a/aR
b/bR
B/BR

The machine obtained by deleting the arcs from gy to g, and those from g, to ¢, labeled
a/a R and b/b R also accepts (a U b)*aa(a U b)* by halting. a

In Exercise 7 a type of acceptance, referred to as acceptance by entering, is introduced
that uses final states but does not require the accepting computations to terminate. A string
= accepted if the computation ever enters a final state; after entering a final state, the
remainder of the computation is irrelevant to the acceptance of the string. As with acceptance
by halting, any Turing machine designed to accept by entering can be transformed into a
machine that accepts the same language by final state.

Unless noted otherwise, Turing machines will accept by final state as in Definition 8.2.1.
The alternative definitions are equivalent in the sense that machines designed in this manner
accept the same family of languages as those accepted by standard Turing machines.

E Multitrack Machines

The remainder of the chapter is dedicated to examining variations of the standard Turing
machine model. Each of the variations appears to increase the capability of the machine.

264 Chapter 8 Turing Machines

We prove that the languages accepted by these generalized machines are precisely those
accepted by the standard Turing machines. Additional variations will be presented in the
exercises.

A multitrack tape is one in which the tape is divided into tracks. A tape position in an
n-track tape contains n symbols from the tape alphabet. The diagram depicts a two-track
tape with the tape head scanning the second position.

The machine reads an entire tape position. Multiple tracks increase the amount of informa-
tion that can be considered when determining the appropriate transition. A tape position in
a two-track machine is represented by the ordered pair [x, y], where x is the symbol in track
1 and y is in track 2.

The states, input alphabet, tape alphabet, initial state, and final states of a two-
track machine are the same as in the standard Turing machine. A two-track transition
reads and rewrites the entire tape position. A transition of a two-track machine is written
a(qi’ [x.yD = [q]' [z, w], d], where d € {L, R}.

The input to a two-track machine is placed in the standard input position in track 1. All
the positions in track 2 are initially blank. Acceptance in multitrack machines is by final
state.

We will show that the langnages accepted by two-track machines are precisely the
recursively enumerable languages. The argument easily generalizes to n-track machines.

Track 2
Track 1

Theorem 8.4.1

A language L is accepted by a two-track Turing machine if, and only if, it is accepted by a
standard Turing machine.

Proof. Clearly, if L is accepted by a standard Turing machine, it is accepted by a two-track
machine. The equivalent two-track machine simply ignores the presence of the second track.

LetM=(Q, X, T, 8, gy, F)be atwo-track machine. A one-track machine will be
constructed in which a single tape square contains the same information as a tape position
in the two-track tape. The representation of a two-track tape position as an ordered pair
indicates how this can be accomplished. The tape alphabet of the equivalent one-track
machine M’ consists of ordered pairs of tape elements of M. The input to the two-track
machine consists of ordered pairs whose second component is blank. The input symbol a
of M is identified with the ordered pair [a, B] of M’. The one-track machine

M=(Q,Zx{B},'xTI,&,q5F

8.5 Two-Way Tape Machines 265

with transition function
8'(g;, [x. yD) =8(g;, [x, ¥D

accepts L(M). [|

ETwo-Way Tape Machines

A Turing machine with a two-way tape is identical to the standard model except that the
tape extends indefinitely in both directions. Since a two-way tape has no left boundary, the
mput can be placed anywhcre on the tape. All other tape positions are assumed to be blank.
The tape head is initially positioned on the blank to the immediate left of the input string.
The advantage of a two-way tape is that the Turing machine designer need not worry about
crossing the left boundary of the tape.

A machine with a two-way tape can be constructed to simulate the actions of a standard
machine by placing a special symbol on the tape to represcnt the left boundary of the one-
way tape. The symbol #, which is assumed not to be an element of the tape alphabet of
the standard machine, is used to simulate the boundary of the tape. A computation in the
2quivalent machine with two-way tape begins by writing # to the immediate left of the initial
w@pe head position. The remainder of a computation in the two-way machine is identical
w© that of the one-way machine except when the computation of the one-way machine
Zrminates abnormally. When the one-way computation attempts to move Lo the left of the
ape boundary, the two-way machine reads the symbol # and cnters a nonaccepting state
chat terminates thc computation.

The standard Turing machine M

ala R
ala L ala L ala L

M: B/BR b/hL B/BL BIBL B/BL

w1ll be used to demonstrate the conversion of a machine with a one-way tape to an equivalent
wo-way machine. All the states of M other than gy are accepting. When the first b is
ancountered, the tape head moves four positions to the left, if possible. Acceptance is
completely determined by the boundary of the tape. A string is rejected by M whenever
he tape head attempts to cross the left-hand boundary. All computations that remain within
he bounds of the tape accept the input. Thus the language of M consists of all strings over
4. b} in which the first b, if present, is preceded by at least three a's.

A machine M’ with a two-way tape can be obtained from M by the addition of three
states ¢, ¢;, and g,. The transitions from states g, and g, insert the simulated endmarker
© the left of the initial position of the tape head of M’, the two-way machine that accepts
LiM). After writing the simulated boundary, the computation enters a copy of the one-way

266 Chapter8 Turing Machines

machine M. The error state g, is entered in M’ when a computation in M attempts to move
to the left of the tape boundary.

b/bL

B/BL 7~ B/BL
&)

0,

We will now show that a language accepted by a machine with a two-way tape is
accepted by a standard Turing machine. The argument utilizes Theorem 8.4.1, which
establishes the interdefinability of two-track and standard machines. The tape positions
of the two-way tape can be numbered by the complete set of integers. The initial position
of the tape head is numbered zero, and the input begins at position one.

-5 -4-3-2-101 2 3 4 5

HNEEEEEEEEN

Imagine taking the two-way infinite tape and folding it so that position —i sits directly
above position i. Adding an unnumbered tape square over position zero produces a two-
track tape. The symbol in tape position i of the two-way tape is stored in the corresponding
position of the one-way, two-track tape. A computation on a two-way infinite tape can be
simulated on this one-way, two-track tape.

-1 -2-34-5

01 2 3 4 5

Let M =(Q, X, T, 8, gg, F) bc a Turing machine with a two-way tape. Using
the correspondence between a two-way tape and a two-track tape, we construct a Turing
machine M’ with a two-track, one-way tape to accept L(M). A transition of M is specified by
the state and the symbol scanned. M’, scanning a two-track tape, reads two symbols at cach

8.5 Two-Way Tape Machines 267

tape position. Symbols U (up) and D (down) are included in the states of M’ to designate
which of the two tracks should be used to determine the transition.
The components of M’ are constructed from those of M and the symbols U and D:

Q' =(QU{g. ¢ x {U, D}
¥=x

M=TuUi#

F' ={lg;, U] [q;, D1|q; €F}.

The initial state of M’ is a pair [g,, D]. The transition from this state writes the marker # on
the upper track in the leftmost tape position.

A transition from [g,, D] returns the tape head to its original position to begin the
simulation of a computation of M. During the remainder of a computation, the # on track 2
is used to indicate when the tape head is reading position zero and to trigger changes from
U to D in the state. The transitions of M’ are defined as follows:

. 8'(lg,. D). [B. B)) =[lg:» D), [B, #], R]
. Forevery x € T, §'(lg,, D), [x, BD =Ilgq. D), [x, B]. L]

. Foreveryz €T — {#} andd € {L, R}, &'([g;, D), [x.z]) =[lg}, D), [y, 2], d]when-
ever 8(g;, x) = [q;, y, d]is a transition of M.

4. Foreveryx €T — {#}andd € {L, R}, §'(lg;, U), [z, xD) =Ilg;. U}, [z, y], d']when-
ever 8(¢;, x) = [g;. ¥, d] is a transition of M, where d' is the opposite direction of d.

. 8(lgi. D), [x, #]) =[lg;, U], [y, #), Rlwheneveré(g;.x) =Ilg;, y, L]isatransition
of M.

6. &'([g;, D), [x,#]) =Ilq;, D). [y.#], Rlwheneveré(g;, x) =[g;, y. R]isatransition
of M.

. 8(lg;, U), [x,#D) =I[lg;. D), [y, #], Rlwheneverd(g;, x) =I[g;, y, R]is atransition
of M.

8. 8'(lgi> U), [x, #D =Ilg;, U, [y.#], R]lwheneverd(g;, x) =[q;, y, L]is atransition
of M.

A transition generated by schema 3 simulates a transition of M in which the tape head
2egins and ends in positions labeled with nonnegative values. In the simulation, this is
xpresented by writing on the lower track of the tape. Transitions defined in schema 4 use
mmly the upper track of the two-track tape. These correspond to transitions of M that occur
o the left of position zero on the two-way infinite tape.

The remaining transitions simulate the transitions of M from position zero on the two-
way tape. Regardless of the U or D in the state, transitions from position zero are determined
v the tape symbol on track 1. When the track is specified by D, the transition is defined
= schema 5 or 6. Transitions defined in 7 and 8 are applied when the state is [g;, U].

The preceding informal arguments outline the proof of the equivalence of one-way and
~o-way Turing machines.

W Y e

w

o~

268 Chapter8 Turing Machines

Theorem 8.5.1
A language L is accepted by a Turing machine with a two-way tape if, and only if, it is
accepted by a standard Turing machine,

Multitape Machines

A k-tape machine has k tapes and k independent tape heads. The states and alphabets of a
multitape machine are the same as in a standard Turing machine. The machine reads the
tapes simultaneously but has only one state. This is depicted by connecting each of the
independent tape heads to a single control indicating the current state.

Tape3 | | [| | |
:
Tpe2 | [\l [[[

I}

Tapet [| }|| | |

al

A transition is determined by the state and the symbols scanned by each of the tape
heads. A transition in a multitape machine may

i) change the state,
ii) write a symbol on each of the tapes,
iii) independently reposition each of the tape heads.

The repositioning consists of moving the tape head one square to the left or one square to
the right or leaving it at its current position. A transition of a two-tape machine scanning
x on tape 1 and x; on tape 2 is written §(g;, X, x3) = [¢;; ¥1, dy; ¥2, dy], where x;, y; €T
and d; € {L, R,). This transition causes the machine to write y; on tape i. The symbol J;
specifies the direction of the movement of tape head i: L signifies a move to the left, R a
move to the right, and S means the head remains stationary. Any tape head attempting to
move to the left of the boundary of its tape terminates the computation abnormally.

The input to a multitape machine is placed in the standard position on tape 1. All the
other tapes are assumed to be blank. The tape heads originally scan the leftmost position
of each tape. A multitape machine can be represented by a state diagram in which the
label on an arc specifies the action for each tape. For example, the transition 8 (g, x;, x3) =
[4;; y1» di; ¥2, dp] will be represented by an arc from g; to g; labeled [x,/y, d), x3/y, ;).

Two advantages of multitape machines are the ability to copy data between tapes and
to compare strings on different tapes. Both of these features will be demonstrated in the
following example.

8.6 Multitape Machines 269

Example 8.6.1
The machine

la/a R, B/a R] [a/a R, a/a L}

[B/B R, B/BR] Q [b/b R, B/B L] Q [B/B R, B/BR]
Xa0) =) ~@) @

accepts the language {a’ba’ | i > 0}. A computation with input string a'ba’ copies the
leading a’s to tape 2 in state g;. When the b is read on tape 1, the computation enters state
2» to compare the ¢’s on tape 2 with the a’s after the b on tape 1. If the same number of a’s
zrecede and follow the b, the computation halts in ¢ and accepts the input. The computation
$or strings without a b halt in ¢, and strings with more than one b in g;. The computations
for strings with with one b and an unequal number of leading and trailing a’s also halt
= ¢,. Since every computation halts, M provides a decision procedure for membership in
‘a‘ba’ | i > 0) and consequently the language is recursive. u]

A standard Turing machine is a multitape Turing machine with a single tape. Conse-
guently, every recursively enumerable language is accepted by a multitape machine. We will
show that the computations of a two-tape machine can be simulated by computations of a
Zve-track machine. The argument can be generalized to show that any language accepted
v a k-lape machine is accepted by a 2k + L-track machine. The equivalence of acceptance
> multitrack and standard machines then allows us to conclude the following.

Theorem 8.6.1

A language L is accepted by a multitape Turing machine if, and only if, it is accepted by a
sandard Turing machine.

LetM=(Q, I, T, &, gy, F)be atwo-tape machine. During a computation, the tape
aeads of a multitape machine are independently positioned on the two tapes.

Tape 2 |7|b|b|c|c|
/
Tapel| |b|aVc| |

The single tape head of a multitrack machine reads all the tracks of a fixed position. The
#ve-track machine M’ is constructed to simulate the computations of M. Tracks 1 and 3
maintain the information stored on tapes 1 and 2 of the two-tape machine. Tracks 2 and
* have a single nonblank square indicating the position of the tape heads of the multitape
machine.

270 Chapter8 Turing Machines

Track 5 #

Track 4 X
Track 3 alb|b|c|c
Track 2 X

Track 1 blal|c

The initial action of the simulation in the multitrack machine is to write # in the leftmost
position of track 5 and X in the leftmost positions of tracks 2 and 4. The remainder of the
computation of the multitrack machine consists of a sequence of actions that simulate the
transitions of the two-tape machine.

A transition of the two-tape machine is determined by the two symbols being scanned
and the machine state. The simulation in the five-track machine records the symbols marked
by each of the X''s. The states are 8-tuples of the form [s, g;, x|, X2, y1. ¥z, d). d;], where
q;€Q; x;, ;e XU (U}, andd; € {L, R, S, U}. The element s represents the status of the
simulation of the transition of M. The symbol U, added to the tape alphabet and the set of
directions, indicates that this item is unknown.

Let 3(g;, x1, x2) = [g;; y1, dyi; ¥2, dy] be the applicable two-tape transition of M.
M’ begins the simulation of the transition in the state [f1, g;, U, U, U, U, U, U]. The
following five actions simulate the transition of M in the multitrack machine.

1. f1 (find first symbol): M’ moves to the right until it reads the X on track 2. State
[f1, g;, xy, U, U, U, U, Ulis entered, where x; is the symbol in track 1 under the
X. After recording the symbol on track 1 in the state, M’ returns to the initial position.
The # on track 5 is used to reposition the tape head.

2. f2(find second symbol): The same sequence of actions records the symbol beneath the
X on track 4. M’ enters state [f2, g;, x;, x5, U, U, U, U], where x, is the symbol
in track 3 under the X. The tape head is then returned to the initial position.

3. M’ enters the state [pl, ¢, X1, X3, Y1, 2. d}, d5), where the values g;, y,, y5, d),
and d, are obtained from the transition 8(g;, x;, x,). This state contains the information
needed to simulate the transition of the M.

4. pl (print first symbol): M’ moves to the right to the X in track 2 and writes the symbol
ypontrack 1. The X on track 2 is moved in the direction designated by d,. The machine
then returns to the initial position.

S. p2 (print second symbol): M’ moves to the right to the X in track 4 and writes the
symbol y, on track 3. The X on track 4 is moved in the direction designated by d,.

6. The simulation of the transition 8(g;, xy, x3) = [g;; 1, dy; ¥2, dp] terminates by return-
ing the tape head to the initial position to process the subsequent transition.

If 8(g;, x, x7) is undefined in the two-tape machine, the simulation halts after returning to
the initial position following step 2. A state [f2, g;, x;. ¥, U, U, U, Ulis an accepting
state of the multitrack machine M’ whenever g; is an accepting state of M.

8.6 Multitape Machines 271

The next two examples illustrate the use of the additional tapes to store and manipulate

data in a computation.

Example 8.6.2

The set {a* | k is a perfect square} is a recursively enumerable language. The design of a
three-tape machine that accepts this language is presented. Tape 1 contains the input string.
The input is compared with a string of X’s on tape 2 whose length is a perfect square. Tape 3
holds a string whose length is the square root of the string on tape 2. The initial configuration
for a computation with input aaaaa is

mes—+ [[[]]

e L LT LT
)

Tapcl—inpull Ialalalalal |

The values of k and k2 are incremented until the length of the string on tape 2 is greater

than or equal to the length of the input. A machine to perform these comparisons consists
of the following actions.

1.

[

129

If the input is the null string, the computation halts in an accepting state. If not, tapes 2
and 3 are initialized by writing X in position one. The thrce tape heads are then moved
1o position one.

. Tape 3 now contains a sequence of k¥ X’s and tape 2 contains k% X’s. Simultaneously,

the heads on tapes 1 and 2 move to the right while both heads scan nonblank squares.
The head reading tape 3 remains at position one.

a) If both heads simultaneously read a blank, the computation halts and the string is
accepted.

b) If tape head | reads a blank and tape head 2 an X, the computation halts and the
string is rejected.

. If neither of the halting conditions occur, the tapes are reconfigured for comparison

with the next perfect square.
a) An X is added to the right end of the string of Xs on tape 2.

b) Two copies of the string on tape 3 are added to the right end of the string on tape 2.
This constructs a sequence of (k + 1)2 X’s on tape 2.

272 Chapter 8 Turing Machines

¢) An X is added to the right end of the string of X’s on tape 3. This constructs a
sequence of k + 1 X’s on tape 3.
d) The tape heads are then repositioned at position one of their respective tapes.

4. The computation continues with step 2.

Tracing the computation for the input string aaczaa, step 1 produces the configuration

mpe3— [[x[[[[[][]]]
/4
Tape2—1° F{/IXI HEEEEEEN

Tape 1 —input [\[[aJafafala] T [[[|

The simultaneous left-to-right movement of tape heads 1 and 2 halts when tape head 2
scans the blank in position two.

Tpe3—t [[x[[[[[][]]]

Part (c) of step 3 reformats tapes 2 and 3 so that the input string can be compared with
the next perfect square.

Tape 3 —2 ILXIXIIIIIIIII
Tape 2 — 22 I‘/I/XIXIXIXI | I | | |L
Tape | —input [\{a|alalafa] [| | | |

8.6 Multitape Machines 273

Another iteration of step 2 halts and rejects the input.

L xfxlxf T L]]]

L Axx[x[x[x|x[x]x[x] |

Tape 3 —3

Tape 2 — 32

Tapcl—inputl \}\alalalala

A machine that performs the preceding computation is defined by the following transitions:

8(gy. a, B, B) =[gs;a, S; X, S; X, S]

(initialize the tape)

8(g2,a, X, X)=[gs:a, R; X, R; X, S]
8(q, B, B, X)=1[gs: B, $: B, $; X, 5]
8(g2.a, B, X)=[g4:a, S; X, R; X, §]

8(q4, a, B, X) =[gs:a, S; X, R; X, 5]

(compare strings on tapes 1 and 2)
(accept)

(rewrite tapes 2 and 3)

8(q4,a, B, B)=I[q¢;a, L;B, L; X, L]
8(gs.a, B, X) =[gq:a. S5; X, R; X, R]

8(¢¢» a, X, X) =[ggia, L; X, L; X, L]
8(g¢»a, X, By =I[gs;a, L; X, L; B, §]
8(g¢» a. B, By =lg¢:a, L; B, S; B, §]
(g6, B, X, B) = [4¢; B, S; X, L; B, §]
3(gs, B, B, B) =[g2: B, R, B, R; B, R].

(reposition tape heads)

(repeat.comparison cycle)

The accepting states are ¢; and ¢3. The null string is accepted in g,, and strings a¥, where

« is a perfect square greater than zero, are accepted in g¢5.
Since the machine designed above halts for all input strings, we have shown that the
Bnguage {a* | kisa perfect square} is not only recursively enumerable but also recursive.
a

274 Chapter 8 Turing Machines

Example 8.6.3
The two-tape Turing machine

[x/x R, B/x R]
[B/BR, B/BR] Q [B/BL, B/BL) xe€ {a b}
O ~@)

N [xxL ylyL)
% ye {a b B}

oo
ot

[x/x L, yly S]
[B/BR, yly R]

@’ [x/x R, xixR]

[y/yR. B/BR)

@

accepts the language {uu | u € {a, b}*}. The symbols x and y on the labels of the arcs
represent an arbitrary input symbol.

The computation begins by making a copy of the input on tape 2. When this is complete,
both tape heads are to the immediate right of the input. The tape heads now move back to
the left, with tape head 1 moving two squares for every one square that tape head 2 moves.
If the computation halts in g3, the input string has odd length and is rejected. The loop in
g4 compares the first half of the input with the second; if they match, the string is accepted
in state gs. o

Nondeterministic Turing Machines

A nondeterministic Turing machine may specify any finite number of transitions for a given
configuration. The components of a nondeterministic machine, with the exception of the
transition function, are identical to those of the standard Turing machine. Transitions in
a nondeterministic machine are defined by a function from Q x I' to subsets of Q x I' x
(L, R}.

Whenever the transition function indicates that more than one action is possible, a
computation arbitrarily chooses one of the transitions. An input string is accepted by a
nondeterministic machine if there is at least one computation that terminates in an accepting
state. The existence of other computations that halt in nonaccepting states or fail to halt
altogether is irrelevant. As usual, the language of a machine is the set of strings accepted
by the machine.

8.7 Nondeterministic Turing Machines 275

Example 8.7.1

The nondeterministic Turing machine

ala R

b/bL a/aL

accepts strings containing a c preceded or followed by ab. The machine processes the input
in state g until a ¢ is encountered. When this occurs, the computation may continue in state
q), enter state g to determine if the ¢ is followed by ab, or enter ¢s to determine if the ¢ is
preceded by ab. In the language of nondeterminism, the computation chooses a ¢ and then
chooses one of the conditions to check. o

The machine constructed in Example 8.7.1 accepts strings by final state. As with
standard machines, acceptance in nondeterministic Turing machines can be defined by final
state or by halting alone. A nondeterministic machine accepts a string u# by halting if there
1s at least one computation that halts normally when run with u. Excrcise 24 establishes that
these alternative approaches accept the same languages.

Nondeterminism does not increase the capabilities of Turing computation; the lan-
guages accepted by nondeterministic machines are precisely those accepted by deterministic
machines. To accomplish the transformation of a nondeterministic Turing machine to an
equivalent deterministic machine, we show that the multiple computations for a single input
string can by sequentially generated and examined.

A nondeterministic Turing machine may produce multiple computations for a single
mput string. The computations can be systematically produced by ordering the alternative
transitions for a state, symbol pair. Let n be the maximum number of transitions defined for
any combination of state and tape symbol. The numbering assumes that 8(g;, x) defines n,
not necessarily distinct, transitions for every state ¢; and tape symbol x with 8(g;, x) # #.
If the transition function defines fewer than n transitions, one transition is assigned several
mrmbers to complete the ordering.

A sequence (m,, m;, ..., my;), where each m; is a number from 1 to n, defines a
mmique computation in the nondeterministic machine. The computation associated with this
sequence consists of k or fewer transitions. The jth transition is determined by the state, the
tape symbol scanned, and m ;, the jth number in the sequence. Assume the j — st transition
leaves the machine in state g; scanning x. If §(¢;, x) = @, the computation halts. Otherwise,
the machine executes the transition in §(g;. x) numbered m ;.

276 Chapter8 Turing Machines

TABLE 8.1 Ordering of Transitions

State Symbol Tramsition State Symbol Transition

9 B 149, B, R) a 1gs.a, R
qu, B, R ZQ3. a, R
3q, B, R 3¢3.a, R
q a 19,4, R % b 194, b, R
2q1, a, R ZQ4, b, R
3ql' a, R 3‘]49 b, R
q, b 141: b, R qs b lqﬁr b, L
291, b, R 246, b, L
3‘]]’ b; R 3q6, b, L
q1 ¢ Ig1. ¢, R g6 a 1g7.a, L
293¢, R 297.a, L
3¢gs.c, L 3¢7.a, L

The transitions of the nondeterministic machine in Example 8.7.1 can be ordered as
shown in Table 8.7.1. The computations defined by the input string acab and the sequences
(1L LLL1),(,121,1),and (2,2,3,3, 1) are

goBacabB 1 goBacahB 1 gyBacahB 2
- Bg,acabB 1 \ BgiacabB 1 + Bg,acabhB 2
- BagcahB 1 - BagcabB 2 \ Bag cabB 3
F Bacq,abB 1 F BacgyabB 1 - BgsacahB.
- BacaghB 1 F Bacag:bB 1
+ Bacahq\B F BacabgyB

The number on the right designates the transition used to obtain the subsequent configu-
ration. The third computation terminates prematurely since no transition is defined when
the machine is in state g5 scanning an a. The string acab is accepted since the computation
defined by (1, 1, 2, 1, 1) terminates in state g4.

Using the ability to sequentially produce the computations of a nondeterministic ma-
chine, we will now show that every nondeterministic Turing machine can be transformed
into an equivalent deterministic machine. Let M = (Q, X, T, 8, ¢;) be a nondetermin-
istic machine that accepts strings by halting. We choose acceptance by halting because
this reduces the number of potential outcomes of a computation from three to two—a

8.7 Nondeterministic Turing Machines 277

computation halts (and accepts) or does not halt. Thus we have fewer cases to consider in
the proof. Assume that the transitions of M have been numbered according to the previous
scheme, with 7 the maximum number of transitions for a state, symbol pair. A deterministic
three-tape machine M’ is constructed to accept the language of M. Acceptance in M’ is also
defined by halting.

The machine M’ is built 1o simulate the computations of M. The correspondence bc-
tween sequences (m,, . . . , m,) and computations of M’ ensures that all possible computa-
tions are examined. The role of the three tapes of M’ are

Tape L: stores the input string;
Tape 2: simulates the tape of M;
Tape 3: holds sequences of the form (my, . . ., m;) to guide the simulation.

A computation in M’ consists of the actions:

. A sequence of integers (my, . . ., m;) from 1 to n is written on tape 3.
. The input string on tape 1 is copied to the standard input position on tape 2.
. The computation of M defined by the sequence on tape 3 is simulated on tape 2.

W N

. If the simulation halts prior to executing k transitions, the computation of M’ halts and
accepts the input.

5. If the computation did not halt in step 3, the next sequence is generated on tape 3 and
the computation continues at step 2.

The simulation is guided by the sequence of values on tape 3. The deterministic Turing
machine in Figure 8.1 generates all finite-length sequences of integers from 1 to n, where
the symbols /, 2, . . . , n are individual tape symbols. Sequences of length 1 are generated
m numeric order, followed by sequences of length 2, length 3, and so on. A computation
begins in state g, at position zero. When the tape head returns to position zero the tape
contains the next sequence of values. The notation i /i abbreviates I/, 2/2, ... ,n/n.

Using the exhaustive generation of numeric sequences, we now construct a determinis-
sic three-tape machine M’ that accepts L(M). A computation of the machine M’ interweaves
the generation of the sequences on tape 3 with the simulation of M on tape 2. M’ halts when
the sequence on tape 3 defines a computation that halts in M. Recall that both M and M’
accept by halting.

Let ¥ and I' be the input and tape alphabets of M. The alphabets of M’ are

ZM' = E
Mw={x#x|xelT}U{l,...,n}
Svmbols of the form #x represent tape symbol x and are used to mark the leftmost square

an tape 2 during the simulation of the computation of M. The transitions of M’ are naturally
grouped by their function. States labeled g, ; are used in the generation of a sequence on tape

278 Chapter8 Turing Machines

(Rollover)
IR

iiR
(Find end of sequcnce)

FIGURE 8.1 Turing machine generating {1, 2, . . . , n}™*.

3. These transitions are obtained from the machine in Figure 8.1. The tape heads reading
tapes 1 and 2 remain stationary during this operation.
8(4s,0. B, B, B) =[q,,1: B, S; B, S; B, R]
8(g;. B, B, t) =g, 1; B, S: B, S;i, R] t=1...,n
(g5, B, B, B)=1g;,5; B, S; B, S, B, L]
8(g5,2, B, B,n) =lq,3; B, §; B, S: 1, L]
8(¢s2 B, B.t —D)=[q,4B,8;B,S;t,L] t=1...,n—1
8(qs.2, B, B, B) =Ig,3; B, S; B, S; B, R]
(453, B, B,) =14, 3 B, S; B, S; 1, R]
(g3, B. B, BY=1[q;,4: B, S: B, S; 1, L]
(g5 B, B, 1) =[g;4; B, §; B, S;1, L] t=1...,n
8(gs,4» B, B, B) =[q.0; B, S; B, S; B, §]

The next step is to make a copy of the input on tape 2. The symbol #B is written in
position zero to designate the left boundary of the tape.

8.7 Nondeterministic Turing Machines 279

3(%,0, B, B,B)= [qc.l; B, R;#B, R; B, S]

8(gc,1» X, B, B) =[q,1;x, R x. R, B, §] forall x e T — (B)
8(q.,1» B, B, B)=1q.2: B, L:B, L; B, §]
8(qc 2. . x, BY=1[g. 2%, L; x, L; B, §] forallx e T

8(q.2. B, #B, B) =[qq; B, S;#B, S; B, R]

The transitions that simulate the computation of M on tape 2 of M’ are obtained directly
from the transitions of M. If 8(g;, x) = [¢;. y, d] is a transition of M assigned the number
t in the ordering, then

8(q;, B.x,1)=[q;; B, S;y,d:t, R]
8(gi» B, #x,1) =[q;; B, S;#y,d:1, R]
are the corresponding transitions of M'.

If the sequence on tape 3 consists of k£ numbers, the simulation processes at most k
transitions. The computation of M’ halts if the computation of M specified by the sequence
on tape 3 halts. When a blank is read on tape 3, the simulation has processed all of the
transitions designated by the current sequence. Before the next sequence is processed,
the result of the simulated computation must be erased from tape 2. To accomplish this,
the tape heads on tapes 2 and 3 are repositioned at the leftmost position in state ¢, o and
4.1, espectively. The head on tape 2 then moves to the right, erasing the tape.

8(q;, B, x, B)=[g,0; B, S; x, S; B, S] forallx e’

8(q;. B, #x, B) =[gq.0; B, S:#x, §;B, S] forallxel

8(4c0. B, x, B)=[q,0:B, S;x, L;B,S] forallxeT

8(q.0, B, #x, B)=1q,; B, S; B, S;B, L] forallxel

8(g.1, B, B,t)=1[q,,: B, S B, 51, L] t=1...,n

3(q¢;,1, Bo Bv B) = [qe.,'2; Bo S; Br R; B) R]

8(q,2, B, x,i)=[g.2: B, S; B, R;i, R] foralxelandi=1,...,n
8(4e2s B. B, B) = 4., B, S; B, L; B, L]

8(q.3 B, B,t)=[q,3 B, S; B, L;t, L] t=1...,n

8(g. 3 B, B, B) =[g4,; B. S; B, S; B, §]

When a blank is read on tape 3, the entire segment of the tape that may have been
accessed during the simulated computation has been erased. M’ then returns the tape heads to

their initial position and enters g, (to generate the next sequence and continue the simulation
of computations.

280 Chapter8 Turing Machines

The process of simulating computations of M, steps 2 through 5 of the algorithm, con-
tinues until a sequence of numbers is generated on tape 3 that defines a halting computation.
The simulation of this computation causes M’ to halt, accepting the input. If the input string
is not in L{M), the cycle of sequence generation and computation simulation in M’ will
continue indefinitely.

The actions of the deterministic machine constructed following the preceding strategy
are illustrated using the nondeterministic machine from Example 8.7.1 and the numbering
of the transitions in Table 8.7.1. The first three transitions of the computation M defined by
the sequence (1, 3, 3, 2, 1) and input string accb are

qoBacchB 1
+ BgyacchB 3
I BagccbB 3
I BgsaccbB.

The sequence 1, 3, 3, 2, I that designates the particular computation of M is written on tape
3 of M'. The configuration of the three-tape machine M’ prior to the execution of the third
transition of M is

Tape 3 —sequence | [1[3[3][2[1] |

Tape 2 — simulation [#[afc[l[b] [|

Tape L —input | [a|dlc[b] | |

Transition 3 from state g; with M scanning a ¢ causes the machine to print ¢, enter state gs,
and move to the left. This transition is simulated in M’ by the transition §'(q,, B, ¢, 3) =
[gs; B, S; ¢, L; 3, R]. The transition of M’ alters tape 2 as prescribed by the transition of M
and moves the head on tape 3 to designate the number of the subsequent transition.

Tape 3 —sequence [[1[3[3]2]1] |

Tape 2 — simulation [#[a]c[clb] | |

Tape 1 —input [Jal\c[d]b] | |

Nondeterministic Turing machines can be defined with a multitrack tape, two-way tape,
or multiple tapes. Machines defined using these alternative configurations can also be shown
to accept precisely the recursively enumerable languages.

8.7 Nondeterministic Turing Machines 281

Like their deterministic counterparts, nondeterministic machines that accept by final
state can be used to show that a language is recursive. If every computation in the nondeter-
ministic machine halts, so will every computation in the equivalent deterministic machine
(Exerecise 23).

Example 8.7.2

The two-tape nondeterministic machine

[a/a R, B/X R] [a/a R, X/X L]
[6/b R, B/X R] [b/b R, X/X L]

B/BR, B/BR Q b/bR, Q B/BR, B/BR
Mz)@[],@[B/BL]@[]_@

accepts the set of strings over {a, b} with a b in the middle. The transition from state g, to
g> on reading a b on tape 1 represents a guess that the b is in the middle of the input. The
loop in state g, compares the number of symbols following the b to the number preceding
it. If a string is in L(M), one computation will enter g3 upon reading the middle b and accept
the input. The computations for strings with no b’s halt in g;, and strings that do not have
a b in the middle halt in either g; or ¢,. Since M halts for all inputs, L(M) is recursive. O

The next example illustrates the flexibility afforded by the combination of multitape
machines and the guess and check strategy of nondeterminism.

Example 8.7.3

LetM=(Q, £, T, 8, gy, F) be a standard Turing machine that accepts a language L.
We will design a two-tape nondeterministic machine M’ that accepts strings over X* that
have a substring of length two or more in L. That is, L(IM") = {1 | u = xyz, length(y) >
2and y € L}. A computation of M’ with input ¥ consists of the following steps:

1. Reading the input on tape 1 and nondeterministically choosing a position in the string
to begin copying to tape 2;

(5]

. Copying from tape 1 to tape 2 and nondeterministically choosing a position to stop
copying;
3. Simulating the computation of M on tape 2.

The first two steps constitute the nondeterministic guess of a substring of # and the third
checks whether the substring is in L.

The states.of M’ are Q U {4, g5, 4., 94> 4.} With start state g,. The alphabets and final
states are the same as those of M. The transitions for steps 1 and 2 use states g, gy, 4., ¢4
md g,.

282 Chapter8 Turing Machines

8'(qs' B! B) ={ [qb; B, R; B’ R]}
8'(qp, x, B)={ gy x, R; B, 8], [g.;x, R;x, R]} forallxeX
8'(q., x, By ={[q.;x, R;x, R], [qq; %, R;x, R]} forallxeX

&8'(qa, x, B) ={[q4: x, R: B, S]} forallx e X
Bl(qd’ B, B) = { [qe; B’ S; B! L]}
8’(q¢' B’ x)={[qe;B' S;xa L]} fora]]xez

sl(q‘n Bw B) = { [q[); B» S; B? SD

The transition from gy, to g, initiates the copying of a substring of # onto tape 2. The second
transition in g, completes the selection of the substring. The tape head on tape 1 is moved
to the blank following the input in g4, and the head on tape 2 is returned to position zero
ing,.

After the nondeterministic selection of a substring, the transitions of M are run on
tape 2 to check whether the *“guessed” substring is in L. The transitions for this part of the
computation are obtained directly from &, the transition function of M:

8'(q;» B, x)={l[q;; B, S;y,d]} whenever 8(g;, x) = [g;. y. d]is a transition of M.

The tape head reading tape 1 remains stationary while the computation of M is run on tape 2.
a

Turing Machines as Language Enumerators

In the preceding sections Turing machines have been formulated as language acceptors: A
machine is provided with an input string, and the result of the computation indicates the
acceptability of the input. Turing machines may also be designed to enumerate a language.
The computation of such a machine sequentially produces an exhaustive listing of the
elements of the language. An enumerating machine has no input; its computation continues
until it has generated every string in the language.

Like Turing machines that accept languages, there are a number of equivalent ways to
define an enumerating machine. We will use a k-tape deterministic machine, k > 2, as the
underlying Turing machine model in the definition of enumerating machines. The first tape
is the output tape and the remaining tapes are work tapes. A special tape symbol # is used
on the output tape to separate the elements of the language that are gencrated during the
computation.

The machines considered in this section perform two distinct tasks, acceptance and
enumeration. To distinguish them, a machine that accepts a language will be denoted M
while an enumerating machine will be denoted E.

8.8 Turing Machines as Language Enumerators 283

Definition 8.8.1
A k-tape Turing machine E = (Q, X, T, §, o) enumerates the language L if
i) the computation begins with all tapes blank;

ii) with each transition, the tape head on tape 1 (the output tape) remains stationary or
moves to the right;

ili) at any point in the computation, the nonblank portion of tape 1 has the form
Bftu ot . . #uy# or B#tu#u# . . . #ug#tv,

where y; € Land v € T*;
iv) a string u will be written on tape 1 preceded and followed by # if, and only if, u € L.

The last condition indicates that the computation of a machine E that enumerates L
eventually writes every string in L on the output tape. Since all of the elements of a language
must be produced, a computation enumerating an infinite language will never halt. The
definition does not require a machine to halt even if it is enumerating a finite language.
Such a machine may continue indefinitely after writing the last element on the output tape.

Example 8.8.1

The machine E enumerates the language L = {a'b¢’ | i > 0). A Turing machine accepting
this language was given in Example 8.2.2.

[BlaR, a/aR]

(B/BR,BIBRl _ ~ [B#R BlaS] _,~ |[Bi#R a/a$)
@) -@ —(%) -

[B/#R, BIBR]

The computation of E begins by writing ## on the output tape, indicating that A € L.
Simultaneously, an @ is written in position one of tape 2, with the head returning to tape

284 Chapter8 Turing Machines

position zero. At this point, E enters the nonterminating loop described by the following
actions.

1. The tape heads move to the right, writing an g on the output tape for every a on the
work tape.

2. The head on the work tape then moves right to left through the ¢’s and a b is written
on the output tape for each a.

3. The tape heads move to the right, writing a ¢ on the output tape for every a on the work
tape.

4. An a is added to the end of the work tape and the head is moved to position one.
5. A #is written on the output tape.

After a string is completed on the output tape, the work tape contains the information
required to construct the next string in the enumeration. u]

The definition of enumeration requires that each string in the language appear on the
output tape but permits a string to appear multiple times. Theorem 8.8.2 shows that any
language that is enumerated by a Turing machine can be enumerated by one in which each
string is written only once on the output tape.

Theorem 8.8.2

Let L be a language enumerated by a Turing machine E. Then there is a Turing machine E/
that enumerates L and cach string in L appears only once on the output tape of E'.

Proof. Assume E is a k-tape machine enumerating L. A (k + 1)-tape machine E’ that
satisfies the “single output™ requirement can be built from the enumerating machine E.
Intuitively, E is a submachine of E’ that produces strings to be considered for output by E'.
The output tape of E' is the additional tape added to E, while the output tape of E becomes
a work tape for E'. For convenience, we call tape 1 the output tape of E'. Tapes 2, 3, . . .,
k + 1are used to simulate E, with tape 2 being the output tape of the simulation. The actions
of E’ consist of the following sequence of steps:

1. The computation begins by simulating the actions of E on tapes 2,3, . . . , k+ 1.

2. When the simulation of E writes #u# on tape 2, E’ initiates a search procedure to see
if u already occurs on tape 2.

3. If u is not on tape 2, it is added to the output tape of E'.
4. The simulation of E is restarted to produce the next string.
Searching for another occurrence of u requires the tape head to examine the entire nonblank

portion of tape 2. Since tape 2 is not the output tape of E’, the restriction that the tape head
on the output tape never move to the left is not violated. [|

Theorem 8.8.2 justifies the selection of the term enumerate to describe this type
of computation. The computation sequentially and exhaustively lists the strings in the

8.8 Turing Machines as Language Enumerators 285

language. The order in which the strings are produced defines a mapping from an initial
sequence of the natural numbers onto L. Thus we can talk about the zeroth string in L, the
first string in L, and so on. This ordering is machine-specific; another enumerating machine
may produce a completely different ordering.

Turing machine computations now have two distinct ways of defining a language: by
acceptance and by enumeration. We show that these two approaches produce the same
languages.

Lemma 8.8.3
If L is enumerated by a Turing machine, then L is recursively enumerable.

Proof. Assume that L is enumerated by a k-tape Turing machine E. A (k + 1)-tape machine
M accepting L can be constructed from E. The additional tape of M is the input tape; the
remaining k tapes allow M to simulate the computation of E. The computation of M begins
with a string « on its input tape. Next M simulates the computation of E. When the simulation
of E writes #, a string w € L has been generated. M then compares 1 with w and accepts u
if u = w. Otherwise, the simulation of E is used to generate another string from L and the
comparison cycle is repeated. If # € L, it will eventually be produced by E and consequently
accepted by M. |]

The proof that any recursively enumerable language L can be enumerated is compli-
cated by the fact that a Turing machine M that accepts L need not halt for every input string.
A straightforward approach to enumerating L would be to build an enumerating machine
that simulates the computations of M to determine whether a string should be written on
the output tape. The actions of such a machine would be to

1. Generate a string u € X*.

2. Simulate the computation of M with input u.

3. Tf M accepts, write u on the output tape.

4. Continue at step |1 until all strings in £* have been tested.

The generate-and-test approach requires the ability to generate the entire set of strings over
¥ for testing. This presents no difficulty, as we will see later. However, step 2 of this naive
approach causes it to fail. It is possible to produce a string # for which the computation
of M does not terminate. In this case, no strings after # will be generated and tested for
membership in L.

To construct an enumerating machine, we first introduce the lexicographical ordering
of the input strings and provide a strategy to ensure that the enumerating machine E will
check every string in ¥*. The lexicographical ordering of the set of strings over a nonempty
alphabet X defines a one-to-one correspondence between the natural numbers and the strings
in I*.

286 Chapter8 Turing Machines

Definition 8.8.4
Let X ={a,, ..., a,} be an alphabet. The lexicographical ordering lo of X* is defined
recursively as follows:
i) Basis: lo(A) =0, lo(g))=ifori=1,2,...,n.
ii) Recursive step: lo(a;u) = lo(u) + i - nfensth),
The values assigned by the function lo define a total ordering on the set X*. Strings

u and v are said to satisfy u < v, u =v, and u > v if lo(u) <lo(v), lo(u) =10(v), and
lo(u) > lo(v), respectively.

Example 8.8.2

Let X ={a, b, c} and let g, b, and ¢ be assigned the values 1, 2, and 3, respectively. The
lexicographical ordering produces

loA)=0 lo(a)=1 lo(@a)=4 loba)=7 lo(ca)=10 lo(aaa)=13
lob)=2 lo(ab)=5 lobb)=8 lo(ch)=11 Ilo(aad)=14
lo()=3 lo(ac)y=6 lodec)=9 lo(cc)=12 lo(aac)=15. 0O

Lemma 8.8.5

For any alphabet X, there is a Turing machine Ey.« that enumerates £* in lexicographical
order.

The construction of a machine that enumerates the set of strings over the alphabet {0, 1}
is left as an exercise.

The lexicographical ordering and-a dovetailing technique are used to show that a
recursively enumerable language L can be enumerated by a Turing machine. Let M be
a Turing machine that accepts L. Recall that M need not halt for all input strings. The
lexicographical ordering produces a listing ug = A, u,, 43, 43, . .. of the strings of £*. A
two-dimensional table is constructed whose columns are labeled by the strings of £* and
rows by the natural numbers.

3 A,31 .31 [up3] . ..
2 21 [#,2] [u,2]
1 A1 Qu,l) lu,.l)

0 (0] [w,0] [u,0] . .

u,

8.8 Turing Machines as Language Enumerators 287

The [i, j] entry in this table is interpreted to mean “run machine M on input u; for j
steps." Using the technique presented in Example 1.4.2, the ordered pairs in the table can
be enumerated in a “diagonal by diagonal" manner (Exercise 33).

The machine E built to enumerate L interleaves the enumeration of the ordered pairs
with the computations of M. The computation of E is a loop that consists of the following
steps:

1. Generate an ordered pair (i, j].

2. Ruon a simulation of M with input «; for j transitions or until the simulation halts.
3. Tf M accepts, write ; on the output tape.

4. Continue with step 1.

If u; € L, then the computation of M with input «; halts and accepts after k transitions, for
some number k. Thus u; will be written to the output tape of E when the ordered pair (i, k]
is processed. The second element in an ordered pair [i, j] ensures that the simulation M is
terminated after j steps. Consequently, no nonterminating computations are allowed and
each string in X* is examined.

Combining the preceding argument with Lemma 8.8.3 yields

Theorem 8.8.6

A language is recursively enumerable if, and only if, it can be enumerated by a Turing
machine.

A Turing machine that accepts a recursively enumerable language halts and accepts
every string in the language but is not required to halt when an input is a string that is not
in the language. A language L is recursive if it is accepted by a machine that halts for all
input. Since every computation halts, such a machine provides a decision procedure for
determining membership in L. The family of recursive languages can also be defined by
enumerating Turing machines.

The definition of an enumerating Turing machine does not impose any restrictions
on the order in which the strings of the language are generated. Requiring the strings to
be generated in a predetermined computable order provides the additional information
needed to obtain negative answers to the membership question. Intuitively, the strategy
1o determine whether a string u is in the language is to begin the enumerating machine and
compare ¥ with each string that is produced. Eventually either u is output, in which case it
is accepted, or some string beyond u in the ordering is generated. Since the output strings
are produced according to the ordering, # has been passed and is not in the language. Thus
we arc able to decide membership, and the language is recursive. Theorem 8.8.7 shows that
recursive languages may be characterized as the family of languages whose elements can
be enumerated in order.

Theorem 8.8.7
L is recursive if, and only if, L can be enumerated in lexicographical order.

288 Chapter8 Turing Machines

Proof. We first show that every recursive language can be enumerated in lexicographical
order. Let L be arecursive language over an alphabet Z. Then it is accepted by some machine
M that halts for all input strings. A machine E that enumerates L in lexicographical order can
be constructed from M and the machine Ey+ that enumerates £* in lexicographical order.
The machine E is a hybrid, interleaving the computations of M and Ey+. The computation
of E consists of the following loop:

1. The machine Eg. is run, producing a string u € £*.
2. M is run with input «.

3. If M accepts u, u is written on the output tape of E.
4. The generate-and-test loop continues with step 1.

Since M halts for all inputs, E cannot enter a nonterminating computation in step 2. Thus
each string # € * will be generated and tested for membership in L.

Now we show that any language L that can be enumerated in lexicographical order is
recursive. This proof is divided into two cases based on the cardinality of L.

Case 1: L is finite. Then L is recursive since every finite language is recursive.

Case 2: L is infinite. The argument is similar to that given in Theorem 8.8.2 except that
the ordering is used to terminate the computation. As before, a (k¥ + 1)-tape machine M
accepting L can be constructed from a k-tape machine E that enumerates L in lexicographical
order. The additional tape of M is the input tape; the remaining 4 tapes allow M to simulate
the computations of E. The ordering of the strings produced by E provides the information
needed to halt M when the input is not in the language. The computation of M begins with
a string # on its input tape. Next M simulates the computation of E. When the simulation
produces a string w, M compares # with w. If # = w, then M halts and accepts. If w is
greater than « in the ordering, M halts rejecting the input. Finally, if w is less than u in
the ordering, then the simulation of E is restarted to produce another element of L and the
comparison cycle is repeated. |]

Exercises

1. Let M be the Turing machine defined by

8 B a /] ¢

90 | 9. B.R

q | 9B, L q1.a, R q. ¢, R q.¢. R
9 q.c L gs. b, L

a) Trace the computation for the input string aabca.
b) Trace the computation for the input string bcbc.

Exercises 289

¢) Give the state diagram of M.
d) Describe the result of a computation in M.
2. Let M be the Turing machine defined by

& B a b ¢

90 g1, B, R

q g, BaR g\ a,R g1 b,R g2, C,L
q2 g b, L ¢ a, L

a) Trace the computation for the input string abcab.

b) Trace the first six transitions of the computation for the input string abab.
c) Give the state diagram of M.

d) Describe the result of a computation in M.

3. Construct a Turing machine with input alphabet {a, b} to perform each of the following
operations. Note that the tape head is scanning position zero in state g5 whenever a
computation terminates.

a) Move the input one space to the right. Input configuration goBu B, result g s BBuB.

b) Concatenate a copy of the reversed input string to the input. Input configuration
goBuB, result ¢ s Buu® B.

*¢) Insert a blank between each of the input symbols. For example, input configuration
goBabaB. result g ;BaBbBaB.

d) Erase the b's from the input. For example, input configuration gyBbabaababB,
result g sBaaaaB.

4. Construct a Turing machine with input alphabet {a, b, c} that accepts strings in which
the first ¢ is preceded by the substring aaa. A string must contain a c to be accepted
by the machine.

5. Construct a Turing machine with input alphabet {a, b} to accept each of the following
languages by final state.

a) (@b’ |i>0, j=i)
b) {a'b/a'bl | i, j >0}
¢) Strings with the same number of a’s and b’s
d) {uu® | u € {a, b)*}
e) {uu|u €{a, b}*}
6. Modify your solution to Exercise 5(a) to obtain a Turing machine that accepts the
language {a'b’ | i >0, j =i} by halting.

7. An alternative method of acceptance by final state can be defined as follows: A string
u is accepted by a Turing machine M if the computation of M with input « enters

290 Chapter8 Turing Machines

*10.

11.

12.

13.

(but does not necessarily terminate in) a final state. With this definition, a string may
be accepted even though the computation of the machine does not terminate. Prove
that the languages accepted by this definition are precisely the recursively enumerable
languages.

. The transitions of a one-tape deterministic Turing machine may be defined by a partial

function from Q x I' to Q x I' x {L, R, S}, where S indicates that the tape head
remains stationary. Prove that machines defined in this manner accept precisely the
recursively enumerable languages.

. An atomic Turing machine is one in which every transition consists of a change of

state and one other action. The transition may write on the tape or move the tape head,
but not both. Prove that the atomic Turing machines accept precisely the recursively
enumerable languages.

A context-sensitive Turing machine is one in which the applicability of a transition is
determined not only by the symbol scanned but also by the symbol in the tape square
to the right of the tape head. A transition has the form

8(gi» xy)=1[q;,2,d] x,y,z€T; de(L,R}).

‘When the machine is in state g; scanning an x, the transition may be applied only when
the tape position to the immediate right of the tape head contains a y. In this case the
x is replaced by z, the machine enters state ¢, and the tape head moves in direction d.

a) Let M be a standard Turing machine. Define a context-sensitive Turing machine M’
that accepts L(M). Hint: Define the transition function of M’ from that of M.

b) Let &(q;. xy) =[g;, z, d] be a context-sensitive transition. Show that the result of
the application of this transition can be obtained by a sequence of standard Turing
machine transitions. You must consider the case both when transition &(g;, xy) is
applicable and when it isn’t.

¢) Use parts (a) and (b) to conclude that context-sensitive machines accept precisely
the recursively enumerable languages.

Prove that every recursively enumerable language is accepted by a Turing machine with
a single accepting state.

Construct a Turing machine with two-way tape and input alphabet (g} that halts if
the tape contains a nonblank square. The symbol @ may be anywhere on the tape, not
necessarily to the immediate right of the tape head.

A two-dimensional Turing machine is one in which the tape consists of a two-
dimensional array of tape squares.

14.

15.

16.

17.

18.

20.

Exercises 291

A transition consists of rewriting a square and moving the head to any one of the four
adjacent squares. A computation begins with the tape head reading the corner position.
The transitions of the two-dimensional machine are written §(g;, x) = [¢;, ¥, d], where
d is U (up), D (down), L (left), or R (right). Design a two-dimensional Turing machine
with input alphabet {a} that halts if the tape contains a nonblank square.

Let L be the set of palindromes over {a, b}.
a) Build a standard Turing machine that accepts L.

b) Build a two-tape machine that accepts L in which the computation with input
should take no more than 3 length(u) + 4 transitions.

Construct a two-tape Turing machine with input alphabet {a, b} that accepts the lan-
guage {a’b¥ | i > 0} in which the tape head on the input tape only moves from left to
right.

Construct a two-tape Turing machine with input alphabet {a, b, c} that accepts the
language {a’b’c’ | i > 0).

Construct a two-tape Turing machine with input alphabet {a, b} that accepts strings
with the same number of ¢’s and b’s. The computation with input # should take no
more than 2 length(u) + 3 transitions.

Construct a two-tape Turing machine that accepts strings in which each a is followed
by an increasing number of b’s; that is, the strings are of the form

ab™ab™ ... ab™, k > 0,

wheren; <ny <--- <ny.

. Construct a nondeterministic Turing machine whose language is the set of strings over

{a, b} that contain a substring satisfying the following two properties:
i) length(u) > 3;
il) u contains the same number of a’s and b’s.

Construct a two-tape nondeterministic Turing machine that accepts L = {uvuw |u €
{a, b}’ , v, w € {a, b}*}. A string is in L if it contains two nonoverlapping identical

292 cChapter8 Turing Machines

21.

22.

23.

24,
25.
26.
27.

28.

29.

30.

31.
32.

*33.

34

3S.

36.

substrings of length 5. Every computation with input w should terminate after at most
2 length(w) + 2 transitions.

Construct a two-tape nondeterministic Turing machine that accepts L = {uu | u €
{a, b}*}. Every computation with input w should terminate after at most 2 length(w) +
2 transitions. Using the deterministic machine from Example 8.6.2 that accepts L, what
is the maximum number of transitions required for a computation with an input of length
n?

LetM=(Q, £, T, 8, g, F) be astandard Turing machine that accepts a language
L. Design a Turing machine M’ (of any variety) that accepts a string w € £* if, and
only if, there is a substring of w in L.

Let L be a language accepted by a nondeterministic Turing machine in which every
computation terminates. Prove that L is recursive.

Prove the equivalent of Theorem 8.3.2 for nondeterministic Turing machines.
Prove that every finite language is recursive.
Prove that a language L is recursive if, and only if, L and L are recursively enumerable.

Prove that the recursive languages are closed under union, intersection, and comple-
ment.

A machine that generates all sequences made up of integers from | to » was given in
Figure 8.1. Trace the first seven cycles of the machine for n = 3. A cycle consists of
the tape head returning to the initial position in state gp.

Build a Turing machine that enumerates the set of even length strings over {a}.
Build a Turing machine that enumerates the set {a’b/ | 0 <i < j}.
Build a Turing machine that enumerates the set {a2" | n > 0}.

Build a Turing machine Ey « that enumerates £* where X = {0, I}. Note: This machine
may be thought of as enumerating all finite-length bit strings.

Build a machine that enumerates the ordered pairs N x N. Represent a number n by a
string of n + 1 I's. The output for ordered pair [, j]should consist of the representation
of the number i followed by a blank followed by the representation of j. The markers
should surround the entire ordered pair.

In Theorem 8.8.7, the proof that every recursive language can be enumerated in
lexicographical order considered the cases of finite and infinite languages separately.
The argument for an infinite language may not be sufficient for a finite language. Why?

Define the components of a two-track nondeterministic Turing machine. Prove that
these machines accept precisely the recursively enumerable languages.

Prove that every context-free language is recursive. Hint: Construct a two-tape nonde-
terministic Turing machine that simulates the computation of a pushdown automaton.

Bibliographic Notes 293

Bibliographic Notes

The Turing machine was introduced by Turing [1936] as a model for algorithmic compu-
tation. Turing's original machine was deterministic, consisting of a two-way tape and a
single tape head. Independently, Post [1936] introduced a family of abstract machines with
the same computational capabilities as Turing machines.

The use of Turing machines for the computation of functions is presented in Chapter 9.
The capabilities and limitations of Turing machines as language acceptors are examined in
Chapters 10 and 11. The books by Kleene [1952], Minsky [1967], Brainerd and Landweber
[1974], and Hennie [1977] give an introduction to computability and Turing machines.

Turing Computable Functions

In the preceding chapter Turing machines provided the computational framework for ac-
cepting languages. The result of a computation was determined by final state or by halting.
In either case there are only two possible outcomes: accept or reject. The result of a Turing
machine computation can also be defined in terms of the symbols written on the tape when
the computation terminates. Defining the result in terms of the halting tape configuration
permits an infinite number of possible outcomes. In this manner, the computations of a Tur-
ing machine produce a mapping between input strings and output strings; that is, the Turing
machine computes a function. When the strings are interpreted as natural numbers, Turing
machines can be used to compute number-theoretic functions. We will show that several im-
portant number-theoretic functions are Turing computable and that computability is closed
under the composition of functions. In Chapter 13 we will categorize the entire family of
functions that can be computed by Turing machines.

The current chapter ends by outlining how a high-level programming language could
be defined using the Turing machine architecture. This brings Turing machine computations
closer to the computational paradigm with which we are most familiar—the modern-day
computer.

Computation of Functions
A funetion f :X — Y is a mapping that assigns at most one value from the set Y to each

¢lement of the domain X. Adopting a computational viewpoint, we refer to the variables of
f as the input of the function. The definition of a function does not specify how to obtain

295

296 Chapter9 Turing Computable Functions

f(x), the value assigned to x by the function f, from the input x. Turing machines will be
designed to compute the values of functions. The domain and range of a function computed
by a Turing machine consist of strings over the input alphabet of the machine.

A Turing machine that computes a function has two distinguished states: the initial
state g and the halting state g ;. A computation begins with a transition from state ¢gq that
positions the tape head at the beginning of the input string. The state g, is never reentered;
its sole purpose is to initiate the computation. All computations that terminate do so in
state ¢ ; with the value of the function written on the tape beginning at position one. These
conditions are formalized in Definition 9.1.1.

Definition 9.1.1

A deterministic one-tape Turing machine M = (Q, X, T, 4, go. g) computes the unary
function f : T* — T*if

i) there is only one transition from the state g, and it has the form §(g, B) = [g;, B. R];

ii) there are no transitions of the form &(g;, x) = [gq, ¥, d]forany ¢; € Q, x, y € T', and
de{L, R}

iii) there are no transitions of the form é(¢ I B);

iv) the computation with input u halts in the configuration g BvB whenever f () = v,
and

v) the computation continues indefinitely whenever f(u) 1.

A function is said to be Turing computable if there is a Turing machine that computes
it. A Turing machine that computes a function f may fail to halt for an input string u. In
this case, f is undefined for u. Thus Turing machines can compute both total and partial
functions.

An arbitrary function need not have the same domain and range. Turing machines can be
designed to compute functions from X* to a specific set R by designating an input alphabet
X and arange R. Condition (iv) is then interpreted as requiring the string v to be an element
of R.

To highlight the distinguished states gg and g ¢, a Turing machine M that computes a
function is depicted by the diagram

Xay—= M

Intuitively, the computation remains inside the box labeled M until termination. This
diagram is somewhat simplistic since Definition 9.1.1 permits multiple transitions to state g ¢
and transitions from g ;. However, condition (iii) ensures that there are no transitions from
q; when the machine is scanning a blank. When this occurs, the computation terminates
with the result written on the tape.

9.1 Computation of Functions 297

Example 9.1.1

The Turing machine

blbR alaR alBL
B/BR blb R bIBL

M: >@ B/BR @ alaR : B/BL 6

computes the partial function f from {a, b}* to {a, b}* defined by

4

A if u contains an a
1 otherwise.

f(u)=[

The function f is undefined if the input does not contain an a. In this case the machine
moves indcfinitely to the right in state g;. When an a is encountered, the machine enters
state g, and reads the remainder of the input. The computation is completed by erasing the
input while returning to the initial position. A computation that terminates produces the
configuration q ;B B designating the null string as the result. o

The machine M in Example 9.1.1 was designed to compute the unary function f. It
should be neither surprising nor alarming that computations of M do not satisfy the require-
ments of Definition 9.1.1 when the input does not have the anticipated form. A computation
of M initiated with input BbBbBa B terminates in the configuration BbBbq s B. In this halt-
ing configuration, the tape does not contain a single value and the tape head is not in the
correct position. This is just another manifestation of the time-honored “garbage in, garbage
out” principle of computer science.

Functions with more than one argument are computed in a similar manner. The input
is placed on the tape with the arguments separated by blanks. The initial configuration of a
computation of a ternary function f with input aba, bbb, and bab is

Llelefa] [o]o]o] [#]afe] | |

K f(aba, bbb, bab) is decfined, the computation terminates with the configuration
q7Bf(aba, bbb, bab)B. The initial configuration for the computation of f(aa, A, bb) is

L lafal | Jole] | |

The consecutive blanks in tape positions three and four indicate that the second argument
1s the null string.

298 Chapter9 Turing Computable Functions

Example 9.1.2
The Turing machine

computes the binary function of concatenation of strings over {a, b}. The initial configura-
tion of a computation with input strings # and v has the form ¢yBuBuv B. Either or both of
the input strings may be null.

The initial string is read in state g,. The cycle formed by states g5, g3, gs, g translates
an a one position to the left. Similarly, g5, g4, gs. g3 shift a b to the left. These cycles
are repeated until the entire second argument has been translated one position to the left,
producing the configuration g, BuvB. o

Turing machines that compute functions can also be used to accept languages. The
characteristic function of a language L is a function xi : £* — {0, /} defined by

!l ifuel
=15 ifugL.

A language L is recursive if there is a Turing machine M that computes the characteristic
function x;.. The results of the computations of M indicate the acceptability of strings. A
machine that computes the partial characteristic function

o (u) = / ifueL
=1 00r + ifugL

shows that L is recursively enumerable. Exercises 2, 3, and 4 establish the equivalence
between acceptance of a language by a Turing machine and the computability of its char-
acteristic function.

9.2 Numeric Computation 299

Numeric Computation

We have seen that Turing machines can be used to compute the values of functions whose
domain and range consist of strings over the input alphabet. In this section we turn our atten-
tion to numeric computation, in particular the computation of number-theoretic functions.
A number-theoretic function is a function of the form f :N x N x . . - x N — N, The do-
main consists of natural numbers or n-tuples of natural numbers. The function s¢ :N — N
defined by sg(rn) = n? is a unary number-theoretic function. The standard operations of
addition and multiplication are binary number-theoretic functions.

The transition from symbolic to numeric computation requires only a change of per-
spective since numbers are represented by strings of symbols. The input alphabet of the
Turing machine is determined by the representation of the natural numbers used in the
computation. We will represent the natural number 7 by the string 7"*!. The number zero
is represented by the string I, the number one by 11, and so on. This notational scheme is
known as the unary representation of the natural numbers. The unary representation of a
natural number 7 is denoted 7. When numbers are encoded using the unary representation,
the input alphabet for a machine that computes a number-theoretic function is the singleton
set {I}.

The computation of f(2, 0, 3) in a Turing machine that computes a ternary number-
theoretic function f begins with the machine configuration

L Lafefo o] [afefafe] | |

If £(2, 0, 3) =4, the computation terminates with the configuration

L Lefafefafe] |]

A k-variable total number-theoretic function 7 : N x N X - - - x N — {0, 1} defines a
k-ary relation R on the domain of the function. The relation is defined by

[ny,ny,mleRifr(ng,ny,m) =1
[nl,nz,...,nk]gkifr(nl,nz,....nk)=0.

The function r is called the characteristic function of the relation R. A relation is Turing
computable if its characteristic function is Turing computable.

We will now construct Turing machines that compute several simple, but important,
number-theoretic functions. The functions arc denoted by lowercase letters and the corre-
sponding machines by capital letters.

300 Chapter9 Turing Computable Functions

The successor function: s(n) =n + 1

1R 1L

s: ,. B/IBR ’ B/1L .

The zero function: z(n) =0

~

/1R 1IBL

z Ya)—BER ' BIBL ’ BIBR (g BIIL .

The empty function: e(n) 1

B/BR
IR

E: @ B/BR %

The machine that computes the successor simply adds a / to the right end of the input
string. The zero function is computed by erasing the input and writing J in tape position
one. The empty function is undefined for all arguments; the machine moves indefinitely to
the right in state g;.

The zero function is also computed by the machine

1/BR B/IBL

@ B/IBR @ 1/1R 8 B/BL g L

That two machines compute the same function illustrates the difference between functions
and algorithms. A function is a mapping from elements in the domain to elements in the
range. A Turing machine mechanically computes the value of the function whenever the
function is defined. The difference is that of definition and computation. In Section 9.5 we
will see that there are number-theoretic functions that cannot be computed by any Turing
machine.

The value of the k-variable projection function p";.‘) is defined as the ith argument
of the input, p",.‘) (ny, Ny, ..., My, ..., m;) = n;. The superscript k specifies the number of
arguments and the subscript designates the argument that defines the result of the projection.
The superscript is placed in parentheses so that it is not mistaken for an exponent. The
machine that computes p(’{) leaves the first argument unchanged and erases the remaining

arguments,
IR

P (G BER B/BR

9.3 Sequential Operation of Turing Machines 301

The function p(:) maps a single input to itself. This function is also called the identity

function and is denoted id. Machines P*) that compute p*’ will be designed in Exam-
! t
ple 9.3.1.

Example 9.2.1

The Turing machine A computes the binary function defined by the addition of natural
numbers.

IR IR mer

A :. B/BR ’B/IR ’B/BL . 1/BL . I/IBL

The unary representations of natural numbers » and 7 are I"*! and /™+!. The sum of these
numbers is represented by I"+"+1_ This string is generated by replacing the blank between
the arguments with a / and erasing two I’s from the right end of the second argument. O

Example 9.2.2

The predecessor function

0 ifn=0

pred(n) = { n—1 otherwise

is computed by the machine D (decrement):

For input greater than zero, the computation erases the rightmost / on the tape. a

B Sequential Operation of Turing Machines

Turing machines designed to accomplish a single task can be combined to construct ma-
chines that perform complex computations. Intuitively, the combination is obtained by
running the machines sequentially. The result of one computation becomes the input for
the succeeding machine. A machine that computes the constant function c¢(n) = 1 can be

302 Chapter9 Turing Computable Functions

constructed by combining the machines that compute the zero and the successor functions.
Regardless of the input, a computation of the machine Z terminates with the value zcro on
the tape. Running the machine S on this tape configuration produces the number one.

The computation of Z terminates with the tape head in position zero scanning a blank.
These are precisely the input conditions for the machine S. The initiation and termination
conditions of Definition 9.1.1 were introduced to facilitate this coupling of machines. The
handoff between machines is accomplished by identifying the final state of Z with the initial
state of S. Except for this handoff, the states of the two machines are assumed to be distinct.
This can be ensured by subscripting each state of the composite machine with the name of
the original machine.

B/IL
()

The sequential combination of two machines is represented by the diagram

Gr— z —G)—= s —=()

The state names are omitted from the initial and final nodes in the diagram since they may
be inferred from the constituent machines.

There are certain sequences of actions that frequently occur in a computation of a
Turing machine. Machines can be constructed to perform these recurring tasks. These
machines are designed in a manner that allows them to be used as components in more
complicated machines. Borrowing terminology from assembly language programming, we
call a machine constructed to perform a single simple task a macro.

The computations of a macro adhere to several of the restrictions introduced in Def-
inition 9.1.1. The initial state g, is used strictly to initiate the computation. Since these
machines are combined to construct more complex machines, we do not assume that a com-
putation must begin with the tape head at position zcro. We do assume, however, that each
computation begins with the machine scanning a blank. Depending upon the operation, the

9.3 Sequential Operation of Turing Machines 303

segment of the tape to the immediate right or left of the tape head will be examined by the
computation. A macro may contain several states in which a computation may terminate.
As with machines that compute functions, a macro is not permitted to contain a transition
of the form 8(g, B) from any halting state g .

A family of macros is often described by a schema. The macro MR; moves the tape
head to the right through i consecutive natural members (sequences of I’s) on the tape. MR,
is defined by the machine

IR

MR, Ya)—22R @

MR, is constructed by adding states to move the tape head through the sequence of & natural
numbers.

IR IR /1R 1/1R

MR, @) B/BR ' B/BR ' B/IBR _ . BIBR ' BIBR '

The move macros do not affect the tape to the left of the initial position of the tape head. A
computation of MR, that begins with the configuration BngyBn,Bn3Bn,B terminates in
the configuration BnyBn,Bng s BrisB.

Macros, like Turing machines that compute functions, expect to be run with the input
having a specified form. The move right macro MR; requires a sequence of at least / natural
numbers 1o the immediate right of the tape at the initiation of a computation. The design
of a composite machine must ensure that the appropriate input configuration is provided to
each macro.

Several families of macros are defined by describing the results of a computation of the
machine. The computation of each macro remains within the segment of the tape indicated
by the initial and final blank in the description. The application of the macro will neither
access nor alter any portion of tape outside of these bounds. The location of the tape head
is indicated by the underscore. The double arrows indicate identical tape positions in the
before and after configurations.

ML, (move left):

Bn\Bm,B...BiB k>0

i 1

BF,B7,B . .. BB

304 Chapter9 Turing Computable Functions

FR (find right):
BBRB i>0
11
B'BnB
FL (find left):
BiB'B i>0
1 1
BriB'B
E; (erase):
BmBni,B...Bn,B k=>1
I I
BB ... BB
CPY, (copy):
BnBn,B...Bn;BBB ... BB k>1

1 I 1

Bn\Bn,B ... B, Bi,BA,B ... Bri B

CPY,; (copy through i numbers):
BA\Bn,B ... BiyBfiy,,...Bi, BB ... BB k>1

1 1 1 1

BA\B,B ... BiyBWy,, ... BR,,;BR,Bi,B ... Bi;B

T (translate):
BB'nB i>0

T 7
BrB'B

The find macros move the tape head into a position to process the first natural number to
the right or left of the current position. E;, erases a sequence of £ natural numbers and halts
with the tape head in its original position.

The copy machines produce a copy of the designated number of integers. The segment
of the tape on which the copy is produced is assumed to be blank. CPY,, ; expects a sequence

9.3 Sequential Operation of Turing Machines 305

of £ + i numbers followed by a blank segment large enough to hold a copy of the first &
numbers. The translate macro changes the location of the first natural number to the right
of the tape head. A computation terminates with the head in the position it occupied at the
beginning of the computation with the translated string to its immediate right.

The BRN (branch on zero) macro has two possible terminating states. The input to the
macro BRN, a single natural number, is used to select the halting state of the macro. The
branch macro is depicted

>®—>BRN—"i>®

n>0

The computation of BRN does not alter the tape nor change the position of the tape head.
Consequently, it may be run in any configuration Bn B, The branch macro is often used
in the construction of loops in composite machines and in the selection of alternative
computations.

Additional macros can be created using those already defined. The machine

XO=CP, =D B, =@ T =O=MR, O+ T =ML ()

interchanges the order of two numbers. The tape configurations for this macro are
INT (interchange):

BrBmBB"t'B
BmBnBB"*'B

In Exercise 6, you are asked to construct a Turing machine for the macro INT that does not
leave the tape segment Bz BmB.

Example 9.3.1

The computation of a machine that evaluates the projection function p“'.‘) consists of three
distinct actions: erasing the initial i — 1 arguments, translating the ith argument to tape
position one, and erasing the remainder of the input. A machine to compute p({f) can be
designed using the macros FR, FL, E;, MR,, and T.

XD E, O T @O MR, [~ R =&~ E,_, (=G>

306 Chapter9 Turing Computable Functions

Turing machines defined to compute functions can be used like macros in the design
of composite machines. Unlike the computations of the macros, there is no a priori bound
on the amount of tape required by a computation of such a machine. Consequently, these
machines should be run only when the input is followed by a completely blank tape.

Example 9.3.2

The macros and previously constructed machines can be used to design a Turing machine
that computes the function f(n) = 3n.

XOCPY, (= MR, =(O>(CPY, (D> A [=O=ML == A

The machine A, constructed in Example 9.2.1, adds two natural numbers. The computation
of f(n) combines the copy macro with A to add three copies of n. A computation with input
n generates the following sequence of tape configurations.

Machine Configuration

BRB
CPY, BRBRB
MR, BnBnB
CPY, BRBRBRB
A BRBR ¥ nB
ML, BABn ¥ nB
A Bn+n+nB

Note that the addition machine A is run only when its arguments are the two rightmost
encoded numbers on the tape. o

Example 9.3.3

The one-variable constant function zero defined by z(n) = 0, for all # € N, can be built from
the BRN macro and the machine D that computes the predecessor function.

" BRN =0 . (%

n>0

¥
D o

9.3 Sequential Operation of Turing Machines 307

Example 9.3.4

A Turing machine MULT is constructed to compute the multiplication of natural numbers.
Macros can be mixed with standard Turing machine transitions when designing a composite
machine. The conditions on the initial state of a macro permit the submachine to be entered
upon the processing of a blank from any state. The identification of the start state of a macro
with a state g; is depicted

. B/IBR M @

Since the macro is entered only upon the processing of a blank, transitions may also be
defined for state ¢; with the tape head scanning nonblank tape symbols.

MULT: > B/BR @ 1R @ B/BR E, C ML, .

T
@’ VIR

*

CPY, E,

T

BIBR
XIBL
w(2))I/BL

X/BL

/IR

' B/IBR . IXR
cPY,,

308 Chapter9 Turing Computable Functions

If the first argument is zero, the computation erases the second argument, returns to
the initial position, and halts. Otherwise, a computation of MULT adds m to itself n times.
The addition is performed by copying 1 and then adding the copy to.the previous total. The
number of iterations is recorded by replacing a / in the first argument with an X when a
copy is made. m]

Composition of Functions

Using the interpretation of a function as a mapping from its domain to its range, we can
represent the unary number-theoretic functions g and by the diagrams

g h

OO OERO

A mapping from N to N can be obtained by identifying the range of g with the domain of
h and sequentially traversing the arrows in the diagrams.

g h

OO0

The function obtained by this combination is called the composition of s with g. The
composition of unary functions is formally defined in Definition 9.4.1. Definition 9.4.2
extends Lhe notion to n-variable functions.

Definition 9.4.1

Let g and k be unary number-theoretic functions. The composition of 4 with g is the unary
function f : N — N defined by

t if g(x) 1
fx)=411 if g(x) =yand h(y) t
h(y) ifg(x)=yandh(y)|.

The composite function is denoted f =h o g.

The value of the composite function f = k o g for input x is written f(x) = A(g(x)).
The latter expression is read “# of g of x.” The value h(g(x)) is defined whenever g(x) is
defined and A is defined for the value g(x). Consequently, the composition of total functions
produces a total function.

From a computational viewpoint, the composition h o g consists of the sequential
evaluation of functions g and 4. The computation of g provides the input for the computation
of h:

9.4 Composition of Functions 309

Input x

l

evaluation
of g

l

g

l

evaluation
of h

'

Result h(g(x))

The composite function is defined only when the preceding sequence of computations can
be successfully completed.

Definition 9.4.2

Let g1, 83, &, be k-variable number-theoretic functions and let 4 be an n-variable
number-theoretic function. The k-variable function f defined by

f(xl, ey Xk) =h(g1(xl. ey xk), P g,,(xl, vaas Xk))
is called the composition of h with g, g5, . . . , g, and written f =h o (gy, ..., g,). The
function f(xy, x;) is undefined if either

i) gi(xy ..., x;) 1 forsome 1<i <n,or
i) gi(xp, ..., xp)=y; forl1<i<nand h(yy, ..., y,) }.
The general definition of composition of functions also admits a computational inter-

pretation. The input is provided to each of the functions g;. These functions generate the
arguments of .

Example 9.4.1
Consider the mapping defined by the composite function

add o (c(;) .addo (p(:;) . p(g)),

where add(n, m) =n +m and c(;) is the threc-variable constant function defined by

310 Chapter9 Turing Computable Functions

c(g) (ny, na, n3) = 2. The composite is a three-variable function since the innermost func-
tions of the composition, the functions that directly utilize the input, require three arguments.
The function adds the sum of the first and third arguments to the constant 2. The result for
input 1, 0, 3 is

add o (9, add o (P, PN, 0, 3)
=add o (D (1,0,3),add o (9, p)(1, 0, 3))

=add(2, add(p? (1,0, 3), p9 (1,0, 3)))

=add(2, add(l, 3))

=add(2, 4)

=6. (m]

A function obtained by composing Turing computable functions is itself Turing com-
putable. The argument is constructive; a machine can be designed to compute the composite
function by combining the machines that compute the constituent functions and the macros
developed in the previous section.

Let g, and g, be three-variable Turing computable functions and let 4 be a Turing
computable two-variable function. Since g;, g;, and s are computable, there are machines
G, Gy, and H that compute them. The actions of a machine that computes the composite
function & o (g,, g;) are traced for input n;, n,, and n5.

Machine Configuration

B, BF,BF;B
CPY, BT, Bii, B, B BTy Bz B

MR, BrBn,Bn;Bn;Bn,Bn3B

G, BnyBnyBn3Bg (n, ny, n3)B

ML, Bn\Bn,Bn;Bg,(n, ny. n3)B

CPY;, BmBnyBn3Bg(n), ny, n3) BnBn,Bn,B

MR, Bn\B